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What is a quantum computer?
It is a computer whose elementary hardware components
work according to the laws of quantum mechanics.
(The hardware components of classical digital computers
work according to the laws of electronic circuits.)
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What is a quantum computer?
It is a computer whose elementary hardware components
work according to the laws of quantum mechanics.
(The hardware components of classical digital computers
work according to the laws of electronic circuits.)

There is a lot more to computation than Boolean algebra!
In going from classical to quantum computers, the concept
of what is computable and what is not does not change,
but the criteria of computational efficiency do.

Present Status
Laws of quantum mechanics are precisely known.
Theoretical foundation of the subject is clear.
Elementary hardware components work as predicted.
Large scale integration (say 10 or more components)
is a technological challenge. Noone knows when that
will arrive, or what a quantum computer will be used for.

Quantum Computation – p.2/25



It is inevitable
“Because the nature isn’t classical, damn it . . . ”

—R.P. Feynman

Laws of classical physics are convenient and useful,
and yet only approximations (that are not fully understood)
to the underlying laws of quantum physics.

Science: Observe and explain phenomena. Theorise!
Technology: Design and control phenomena. Optimise!

Yesterday’s science becomes tomorrow’s technology.
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It is inevitable
“Because the nature isn’t classical, damn it . . . ”

—R.P. Feynman

Laws of classical physics are convenient and useful,
and yet only approximations (that are not fully understood)
to the underlying laws of quantum physics.

Science: Observe and explain phenomena. Theorise!
Technology: Design and control phenomena. Optimise!

Yesterday’s science becomes tomorrow’s technology.

Quantum effects (discreteness, dispersion, tunnelling etc.)
have been considered “undesirable nuisance” in the
classical computer design.
Why not go to the other side, where classical effects
(decoherence, thermal fluctuations etc.) become
“undersirable nuisance” in the quantum computer design?
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Shrinking computer circuits

Number of transistors on a chip doubles every two years.
1948: First transistor, size ∼ 1 cm. Today: VLSI circuits, size 45 nm.

Atomic size, 0.1 nm, is not very far!
(First nanotechnnology, and then decoherence, will have to be conquered along the way.)
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It is a breakthrough
Computers are physical devices, not mere mathematical
entities to implement algorithms. Quantum mechanics
demonstrates that complex numbers are physical.
(We nevertheless carry the burden of history in the
nomenclature—“real” and “imaginary” components.)
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It is a breakthrough
Computers are physical devices, not mere mathematical
entities to implement algorithms. Quantum mechanics
demonstrates that complex numbers are physical.
(We nevertheless carry the burden of history in the
nomenclature—“real” and “imaginary” components.)

Quantum mechanics is a theory of waves. Wavefunctions
can superpose, interfere, disperse and so on. Waves have
been widely used in communications, but hardly any use of
their properties has been made in computation.

Superposition allows multiple signals at the same point
at the same time. All of them can be simultaneously
processed, and any one of them can be selectively
observed (e.g. radio or cell-phone transmissions).
This offers an SIMD parallel computing paradigm with
no extra hardware. Which algorithms can exploit this?
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Explorations
Discrete variables:
Qubit Technology
Electron spin Crystal defects
Nuclear spin Nuclear magnetic resonance
Photon polarisation Quantum optics, cavity QED
Two-level atom Ion traps, Quantum dots
Magnetic flux quantum Superconducting circuits
Non-abelian anyon ?Spin chains?

Continuous variables:
Bose-Einstein condensates, Adiabatic quantum evolution.
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Explorations
Discrete variables:
Qubit Technology
Electron spin Crystal defects
Nuclear spin Nuclear magnetic resonance
Photon polarisation Quantum optics, cavity QED
Two-level atom Ion traps, Quantum dots
Magnetic flux quantum Superconducting circuits
Non-abelian anyon ?Spin chains?

Continuous variables:
Bose-Einstein condensates, Adiabatic quantum evolution.

Range of opinion polls on availibility of quantum computers
10 years, 20 years, 50 years, . . . , never!

TO
We already have quantum computers!
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Basics
The simplest quantum system is a qubit, with two basis
vectors |0〉 and |1〉 (e.g. | ↑〉 and | ↓〉 for an electron spin).
A generic qubit state is a 2-dim complex unit vector.

|q〉 = α|0〉 + β|1〉, |α|2 + |β|2 = 1.

A quantum register is an ordered string of n qubits.
It is a complex unit vector in the 2n-dim Hilbert space.

|x〉 =
1

∑

i1,i2...in=0

ci1i2...in|xi1〉|xi2〉 . . . |xin〉,
1

∑

i1,i2...in=0

|ci1i2...in|2 = 1.
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Basics
The simplest quantum system is a qubit, with two basis
vectors |0〉 and |1〉 (e.g. | ↑〉 and | ↓〉 for an electron spin).
A generic qubit state is a 2-dim complex unit vector.

|q〉 = α|0〉 + β|1〉, |α|2 + |β|2 = 1.

A quantum register is an ordered string of n qubits.
It is a complex unit vector in the 2n-dim Hilbert space.

|x〉 =
1

∑

i1,i2...in=0

ci1i2...in|xi1〉|xi2〉 . . . |xin〉,
1

∑

i1,i2...in=0

|ci1i2...in|2 = 1.

A generic instruction is a rotation of the quantum state
vector in the Hilbert space. It is a unitary transformation
that is deterministic and fully reversible.

A measurement is a projection. In the computational basis,
it yields the state |xi1〉|xi2〉 . . . |xin〉 with probability |ci1i2...in|2.
This operation is probabilistic and irreversible.
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Applications
Complexity of a quantum algorithm is decided by the trade-off between
the number of evolution steps and the number of states that can be
coherently superposed.
The gain may be exponential, polynomial or just marginal (factor of 2).
The input and output states of a quantum computer are always mapped to
classical states, through a suitable choice of basis vectors.
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Applications
Complexity of a quantum algorithm is decided by the trade-off between
the number of evolution steps and the number of states that can be
coherently superposed.
The gain may be exponential, polynomial or just marginal (factor of 2).
The input and output states of a quantum computer are always mapped to
classical states, through a suitable choice of basis vectors.

Simulation: A quantum computer can simulate quantum models efficiently.
(Generically, quantum models are hard to simulate on digital computers.)

Cryptography: Secure key distribution protocols have been formulated
and demonstrated, where an eavesdropper (unaware of the signal basis)
cannot extract any information from the transmission without disturbing
the signal. (The disturbance can be detected, and privacy amplification
schemes allow full protection from bounded noise.)

Pattern recognition: Clever superposition and interference can amplify the
desired feature. The gain depends on the structure present in the data.
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Shor’s Factorisation Algorithm
Multiplication is easy, but no polynomial (in the number of digits)
classical algorithm for factoring a number is known. Security of
public key cryptography systems (e.g. RSA) relies on this fact.

The problem of factoring a number N can be reduced to finding the period
of the function f(x) = ax mod N . (a is chosen coprime to N , modular
exponentiation is easy, number of possible remainders is limited.)
Period r: f(0) = 1, f(1) = a, . . . , f(r) = ar mod N = 1.
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Multiplication is easy, but no polynomial (in the number of digits)
classical algorithm for factoring a number is known. Security of
public key cryptography systems (e.g. RSA) relies on this fact.

The problem of factoring a number N can be reduced to finding the period
of the function f(x) = ax mod N . (a is chosen coprime to N , modular
exponentiation is easy, number of possible remainders is limited.)
Period r: f(0) = 1, f(1) = a, . . . , f(r) = ar mod N = 1.

Whenever r is even, (ar/2 − 1)(ar/2 + 1) = 0 mod N . So (ar/2 − 1) and/or
(ar/2 + 1) has a factor in common with N . (GCD is easy to calculate.)

Example: N = 15 and a = 2.
2x mod 15 = 1, 2, 4, 8, 16 → 1, 32 → 2, . . . ⇒ r = 4, r/2 = 2.
Both (22 − 1) = 3 and (22 + 1) = 5 are factors of 15.
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Shor’s Factorisation Algorithm
Multiplication is easy, but no polynomial (in the number of digits)
classical algorithm for factoring a number is known. Security of
public key cryptography systems (e.g. RSA) relies on this fact.

The problem of factoring a number N can be reduced to finding the period
of the function f(x) = ax mod N . (a is chosen coprime to N , modular
exponentiation is easy, number of possible remainders is limited.)
Period r: f(0) = 1, f(1) = a, . . . , f(r) = ar mod N = 1.

Whenever r is even, (ar/2 − 1)(ar/2 + 1) = 0 mod N . So (ar/2 − 1) and/or
(ar/2 + 1) has a factor in common with N . (GCD is easy to calculate.)

Example: N = 15 and a = 2.
2x mod 15 = 1, 2, 4, 8, 16 → 1, 32 → 2, . . . ⇒ r = 4, r/2 = 2.
Both (22 − 1) = 3 and (22 + 1) = 5 are factors of 15.

Periodic patterns are easily detected by Fourier Transform,
which is a familiar unitary operation in quantum theory.
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Quantum Fourier Transform
∑

x f(x)|x〉 =
∑

y

(

1√
N

∑

x e2πixy/Nf(x)
)

|y〉

Let N = 2n, and use the same tricks as in FFT.
In binary notation, x = xn−1 · 2n−1 + . . . + x1 · 2 + x0.
frac(xy

N ) = yn−1(.x0) + yn−2(.x1x0) + . . . + y0(.xn−1 . . . x0).
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Quantum Fourier Transform
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x f(x)|x〉 =
∑

y

(

1√
N

∑

x e2πixy/Nf(x)
)

|y〉

Let N = 2n, and use the same tricks as in FFT.
In binary notation, x = xn−1 · 2n−1 + . . . + x1 · 2 + x0.
frac(xy

N ) = yn−1(.x0) + yn−2(.x1x0) + . . . + y0(.xn−1 . . . x0).

Unitary rotation of QFT: |x〉 → 1√
N

∑

y e2πixy/N |y〉

=
(|0〉+e2πi(.x0)|1〉)√

2

(|0〉+e2πi(.x1x0)|1〉)√
2

. . .
(|0〉+e2πi(.xn−1...x0)|1〉)√

2

Factorisation reduces QFT to n single qubit rotations.
The components f(x) can be processed in superposition.
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N

∑

y e2πixy/N |y〉

=
(|0〉+e2πi(.x0)|1〉)√

2

(|0〉+e2πi(.x1x0)|1〉)√
2

. . .
(|0〉+e2πi(.xn−1...x0)|1〉)√

2

Factorisation reduces QFT to n single qubit rotations.
The components f(x) can be processed in superposition.

Fourier Transform is a multiplication by an N × N matrix.
FFT factorisation reduces the operations to O(N log N).
QFT parallelism cuts down the operations to O((log N)2).
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Quantum random walk
Efficient solutions of many practical problems require
non-deterministic algorithms, which contain probabilistic
branched evolution trees.
These problems are typically described using graphs,
with vertices denoting the states and edges denoting the
evolutionary routes.
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non-deterministic algorithms, which contain probabilistic
branched evolution trees.
These problems are typically described using graphs,
with vertices denoting the states and edges denoting the
evolutionary routes.

A classical computer can explore only one branch at a time,
and random numbers (or equivalently coin toss instructions)
are used to explore different evolutionary branches.
A particular evolution corresponds to a specific walk on the
graph. The final solution is obtained by combining the
results for many random walks.
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Quantum random walk
Efficient solutions of many practical problems require
non-deterministic algorithms, which contain probabilistic
branched evolution trees.
These problems are typically described using graphs,
with vertices denoting the states and edges denoting the
evolutionary routes.

A classical computer can explore only one branch at a time,
and random numbers (or equivalently coin toss instructions)
are used to explore different evolutionary branches.
A particular evolution corresponds to a specific walk on the
graph. The final solution is obtained by combining the
results for many random walks.

Quantum computers can explore multiple evolutionary
branches of an algorithm—in a single attempt—by using
clever superpositions of states. (Coin is unnecessary.)
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Quantum diffusion
Random walks represent a diffusion process.
Classical diffusion operator is the Laplacian: ∂P

∂t = ∇2P .

A spatial mode with wave vector ~k evolves as exp(−E(~k)t),
with E(~k) ∝ |~k|2. The slowest propagating modes (small ~k)
produce the characteristic Brownian motion signature:

distance ∝
√

time
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Quantum diffusion
Random walks represent a diffusion process.
Classical diffusion operator is the Laplacian: ∂P

∂t = ∇2P .

A spatial mode with wave vector ~k evolves as exp(−E(~k)t),
with E(~k) ∝ |~k|2. The slowest propagating modes (small ~k)
produce the characteristic Brownian motion signature:

distance ∝
√

time

Non-relativistic quantum mechanics (Schrödinger equation)
uses the same Laplacian operator, with the same scaling.
But there is an alternative. Relativistic Dirac equation uses
the diffusion operator ~α · ~∇ (αi are anticommuting objects,
e.g. Pauli matrices), with E(~k) ∝ |~k| and the signature:

distance ∝ time
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Quantum diffusion
Random walks represent a diffusion process.
Classical diffusion operator is the Laplacian: ∂P

∂t = ∇2P .

A spatial mode with wave vector ~k evolves as exp(−E(~k)t),
with E(~k) ∝ |~k|2. The slowest propagating modes (small ~k)
produce the characteristic Brownian motion signature:

distance ∝
√

time

Non-relativistic quantum mechanics (Schrödinger equation)
uses the same Laplacian operator, with the same scaling.
But there is an alternative. Relativistic Dirac equation uses
the diffusion operator ~α · ~∇ (αi are anticommuting objects,
e.g. Pauli matrices), with E(~k) ∝ |~k| and the signature:

distance ∝ time

Any NP-complete problem speeds up at least quadratically.
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Random walk on a line
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ÈΨsÈ
2

P (x, t) = 1
√

2πt
e−x2/2t |ψs|2 = 4t2

π
√

4t2−2n2 (4t2−n2)
R

P (x, t)dx = 1
R

√

2t

n=−

√

2t
|ψs|2dn = 1

R

|x| · P (x, t)dx =
q

2t
π

R

√

2t

n=−

√

2t
|n| · |ψs|2dn = t

R

x2P (x, t)dx = t
R

√

2t

n=−

√

2t
n2|ψs|2dn = 2(2 −

√
2)t2

Probability distributions for symmetric random walks:
Left: The classical one is a Gaussian.
Right: The quantum one is double peaked.
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Grover’s Quantum Database Search
Consider an unsorted database with N items.
Starting from an unbiased state, the desired item is to be
found using the smallest number of binary oracle calls.
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Grover’s Quantum Database Search
Consider an unsorted database with N items.
Starting from an unbiased state, the desired item is to be
found using the smallest number of binary oracle calls.

States: |i〉 any item, |s〉 starting state, |t〉 target state.

|〈i|s〉|2 = 1/N, |〈i|t〉|2 = δit.

Operators: Reflections along |t〉 and |s〉 directions.

Ut = 1 − 2|t〉〈t| (Potential energy attraction)

Us = 1 − 2|s〉〈s| (Kinetic energy diffusion)

Algorithm: (−UsUt)
Q|s〉 = |t〉

Solution: (2Q + 1) sin−1(1/
√

N) = π/2 =⇒ Q = π
√

N/4
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Grover’s Quantum Database Search
Consider an unsorted database with N items.
Starting from an unbiased state, the desired item is to be
found using the smallest number of binary oracle calls.

States: |i〉 any item, |s〉 starting state, |t〉 target state.

|〈i|s〉|2 = 1/N, |〈i|t〉|2 = δit.

Operators: Reflections along |t〉 and |s〉 directions.

Ut = 1 − 2|t〉〈t| (Potential energy attraction)

Us = 1 − 2|s〉〈s| (Kinetic energy diffusion)

Algorithm: (−UsUt)
Q|s〉 = |t〉

Solution: (2Q + 1) sin−1(1/
√

N) = π/2 =⇒ Q = π
√

N/4

The algorithm is optimal, evolving the starting state |s〉
to the target state |t〉 along the shortest geodesic route.
Compared to its O(

√
N) scaling, any algorithm based on

Boolean logic needs O(N) oracle calls.
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An example
The key feature of the algorithm is wave dynamics, and not entanglement.
Using a single oracle call, the algorithm identifies 1 out of 4 items in the
database. In contrast, a Boolean algorithm identifies only 1 out of 2 items.

Amplitudes Algorithmic Steps Physical Implementation

(1) 0

0.5
Uniform
distribution

Equilibrium
configuration

(The first item is desired by the oracle. The dashed line denotes the average amplitude.)
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(The first item is desired by the oracle. The dashed line denotes the average amplitude.)
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Uniform
distribution
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perturbation
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(The first item is desired by the oracle. The dashed line denotes the average amplitude.)
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An example
The key feature of the algorithm is wave dynamics, and not entanglement.
Using a single oracle call, the algorithm identifies 1 out of 4 items in the
database. In contrast, a Boolean algorithm identifies only 1 out of 2 items.

Amplitudes Algorithmic Steps Physical Implementation

(1) 0

0.5
Uniform
distribution

Equilibrium
configuration

?
Ub Quantum oracle Binary question

(2) 0
0.25 Amplitude of

desired state
flipped in sign

Sudden
perturbation

?

−Us Reflection
about average

Overrelaxation

(3)
0
0.25

p p p

Desired state
reached

Opposite end
of oscillation

(4) Projection Algorithm
is stopped

Measurement

(The first item is desired by the oracle. The dashed line denotes the average amplitude.)
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A mechanical model
Grover’s algorithm is an amplitude amplification process.
A system of coupled wave modes can execute it, provided
(1) Superposition of modes maintains phase coherence.
(2) The two reflection operations (phase changes of π for
the appropriate mode) can be efficiently implemented.
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A mechanical model
Grover’s algorithm is an amplitude amplification process.
A system of coupled wave modes can execute it, provided
(1) Superposition of modes maintains phase coherence.
(2) The two reflection operations (phase changes of π for
the appropriate mode) can be efficiently implemented.

In the quantum version, |A|2 gives the probability of a state,
and the algorithm solves the database search problem.
In the classical wave version, |A|2 gives the energy of a
mode, and the algorithm provides the fastest method for
energy redistribution through the phenomenon of beats.
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A mechanical model
Grover’s algorithm is an amplitude amplification process.
A system of coupled wave modes can execute it, provided
(1) Superposition of modes maintains phase coherence.
(2) The two reflection operations (phase changes of π for
the appropriate mode) can be efficiently implemented.

In the quantum version, |A|2 gives the probability of a state,
and the algorithm solves the database search problem.
In the classical wave version, |A|2 gives the energy of a
mode, and the algorithm provides the fastest method for
energy redistribution through the phenomenon of beats.

Consider N identical coupled harmonic oscillators. Identical coupling
between them is arranged by attaching them to a big oscillator through
the centre-of-mass mode.
Elastic reflection of an oscillator implements the binary oracle in
momentum space. Evolution by half an oscillation period implements
the reflection about average operation. Quantum Computation – p.19/25



Possible uses
Decoherence of quantum behaviour is extremely fast, but
vibrational systems with small damping can be made easily.

Focusing of energy:
Concentration of total energy of a coupled oscillator system
into a specific oscillator can have potential applications in
processes that are highly sensitive to energy availability.
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Possible uses
Decoherence of quantum behaviour is extremely fast, but
vibrational systems with small damping can be made easily.

Focusing of energy:
Concentration of total energy of a coupled oscillator system
into a specific oscillator can have potential applications in
processes that are highly sensitive to energy availability.

Nanomechanical devices: A coupled oscillator system can
provide efficient focusing of energy at a specific location,
when one cannot directly control the component concerned.

For example,
a comb-shaped
cantilever beam
can be used as a
selective switch.
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Catalysis: There exist many processes that need crossing
of an energy threshold for completion. Their rates are
typically governed by the Boltzmann factor for the energy
barrier, exp(−Ebarrier/kT ). Energy amplification can speed
up the rates of such processes by large factors.
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typically governed by the Boltzmann factor for the energy
barrier, exp(−Ebarrier/kT ). Energy amplification can speed
up the rates of such processes by large factors.

Dispersal of energy:
The algorithm is fully reversible, and running it backwards,
i.e. (−UtUs)

Q|t〉 = |s〉, distributes large initial energy in one
of the oscillators equally among its partners.
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Catalysis: There exist many processes that need crossing
of an energy threshold for completion. Their rates are
typically governed by the Boltzmann factor for the energy
barrier, exp(−Ebarrier/kT ). Energy amplification can speed
up the rates of such processes by large factors.

Dispersal of energy:
The algorithm is fully reversible, and running it backwards,
i.e. (−UtUs)

Q|t〉 = |s〉, distributes large initial energy in one
of the oscillators equally among its partners.

Shock absorbers and vibrational isolation: Instead of
damping a single perturbed oscillator, it is much more
efficient to disperse the energy into several oscillators
while damping them together.
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A hierarchical system of oscillators—four small ones
coupled to a big one at every level with appropriate mass,
spring and damping parameters—can provide a practical
realisation of this idea.

(The initial impulse is taken to be a local disturbance,
which subsequently spreads out.)
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Genetic languages

1. What is the information processing task carried out by
the genetic code?
Assembling molecules by picking up components from
an unsorted database.

2. What is the optimal way of carrying out this task?
Lov Grover’s quantum search algorithm.
(Requires wave dynamics.)

3. What is the signature of this algorithm?

(2Q + 1) sin−1 1√
N

= π
2

=⇒
{

Q = 1, N=4
Q = 2, N=10.5
Q = 3, N=20.2
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Lessons from Molecular Biology
Molecular biology is a nanotechnology that works—it has worked for
billions of years and in an amazing variety of circumstances. Darwinian
evolution has taken its basic processes to their highly optimised and
essentially universal forms. By looking at them as information processing
tasks, we can analyse what has been optimised and how.

Telltale signatures of quantum effects and wave dynamics show up in
several instances. Examples are enzyme catalysis, photosynthesis and
structure of genetic languages. Obviously, a fundamental understanding
of molecular biology would have a lot to say about what we may design or
convert ourselves into.
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billions of years and in an amazing variety of circumstances. Darwinian
evolution has taken its basic processes to their highly optimised and
essentially universal forms. By looking at them as information processing
tasks, we can analyse what has been optimised and how.

Telltale signatures of quantum effects and wave dynamics show up in
several instances. Examples are enzyme catalysis, photosynthesis and
structure of genetic languages. Obviously, a fundamental understanding
of molecular biology would have a lot to say about what we may design or
convert ourselves into.

Enzyme Catalysis: Reaction rate enhancements range from 106 to 1012.
Chemical industry reaches 103 − 106.

Photosynthesis: Coherent oscillations last for longer than 500fs.
No coherence longer than 100fs was expected.

Genetic languages: No. of letters in the alphabet fit Grover’s algorithm.
The languages are considered frozen accident.
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