The Physics of Computation

Directions from the Quantum World

Apoorva D. Patel

Centre for High Energy Physics
http://www.iisc.ac.in/initiative-on-quantum-technologies/

20 September 2018, IISc Colloquium
Acknowledgments

Lattice gauge theories:

Rajan Gupta Clive Baillie Raghunath Ratabole
Gregory Kilcup Ralph Brickner
Stephen Sharpe David Daniel
Acknowledgments

Lattice gauge theories:
Rajan Gupta Clive Baillie Raghunath Ratabole
Gregory Kilcup Ralph Brickner
Stephen Sharpe David Daniel

Quantum Computation:
Lov Grover Tathagat Tulsi Anil Kumar
K.S. Raghunathan Md. Aminur Rahaman T.S. Mahesh
Pranaw Rungta Anjani Priyadarsini Avik Mitra
R. Vijayaraghavan Parveen Kumar Hemant Katiyar
J. Abhijith Aavishkar Patel
Acknowledgments

Lattice gauge theories:
Rajan Gupta Clive Baillie Raghunath Ratabole
Gregory Kilcup Ralph Brickner
Stephen Sharpe David Daniel

Quantum Computation:
Lov Grover Tathagat Tulsi Anil Kumar
K.S. Raghunathan Md. Aminur Rahaman T.S. Mahesh
Pranaw Rungta Anjani Priyadarsini Avik Mitra
R. Vijayaraghavan Parveen Kumar Hemant Katiyar
 J. Abhijith Aavishkar Patel

Genetic Languages: Semiclassical Gravity:

T. Padmanabhan
Computation

Any physical process evolves an initial state to a final state under the influence of certain interactions.

Initial state \rightarrow Interactions \rightarrow Final state
Computation

Any physical process evolves an initial state to a final state under the influence of certain interactions.

Initial state \rightarrow Interactions \rightarrow Final state

A computer processes the given input to an output according to specified instructions.

Input \rightarrow Processing \rightarrow Output
Computation

Any physical process evolves an initial state to a final state under the influence of certain interactions.

\[
\text{Initial state} \rightarrow \text{Interactions} \rightarrow \text{Final state}
\]

A computer processes the given input to an output according to specified instructions.

\[
\text{Input} \rightarrow \text{Processing} \rightarrow \text{Output}
\]

It *purposefully processes meaningful information.*

The meaning arises from mapping physical properties (hardware) to mathematical terminology (software).
Computation

Any physical process evolves an initial state to a final state under the influence of certain interactions.

\[
\text{Initial state} \rightarrow \text{Interactions} \rightarrow \text{Final state}
\]

A computer processes the given input to an output according to specified instructions.

\[
\text{Input} \rightarrow \text{Processing} \rightarrow \text{Output}
\]

It purposefully processes meaningful information. The meaning arises from mapping physical properties (hardware) to mathematical terminology (software).

The availability of different physical interactions makes it possible to design different types of computers. Only those mathematical operations can be carried out, which can be mapped to physical processes.
Computation

Any physical process evolves an initial state to a final state under the influence of certain interactions.

\[\text{Initial state} \rightarrow \text{Interactions} \rightarrow \text{Final state}\]

A computer processes the given input to an output according to specified instructions.

\[\text{Input} \rightarrow \text{Processing} \rightarrow \text{Output}\]

It purposefully processes meaningful information. The meaning arises from mapping physical properties (hardware) to mathematical terminology (software).

The availability of different physical interactions makes it possible to design different types of computers. Only those mathematical operations can be carried out, which can be mapped to physical processes.

Optimisation of physical resources required to implement a given task is always desirable. There is a lot to learn from what biological systems have discovered over billions of years!
What is a quantum computer?

It is a computer whose elementary hardware components work according to the laws of quantum mechanics. (The hardware components of classical digital computers work according to the laws of electronic circuits.)
What is a quantum computer?

It is a computer whose elementary hardware components work according to the laws of quantum mechanics. (The hardware components of classical digital computers work according to the laws of electronic circuits.)

There is a lot more to computation than Boolean algebra! In going from classical to quantum computers, the concept of what is computable and what is not does not change, but the criteria of computational efficiency do.
What is a quantum computer?

It is a computer whose elementary hardware components work according to the laws of quantum mechanics. (The hardware components of classical digital computers work according to the laws of electronic circuits.)

There is a lot more to computation than Boolean algebra! In going from classical to quantum computers, the concept of what is computable and what is not does not change, but the criteria of computational efficiency do.

Present Status

Laws of quantum mechanics are precisely known. Theoretical foundation of the subject is clear. Elementary hardware components work as predicted.
What is a quantum computer?

It is a computer whose elementary hardware components work according to the laws of quantum mechanics. (The hardware components of classical digital computers work according to the laws of electronic circuits.)

There is a lot more to computation than Boolean algebra! In going from classical to quantum computers, the concept of what is computable and what is not does not change, but the criteria of computational efficiency do.

Present Status

Laws of quantum mechanics are precisely known. Theoretical foundation of the subject is clear. Elementary hardware components work as predicted. Large scale integration (say 10 or more components) is a technological challenge. Threshold for quantum supremacy is on the verge of being crossed.
What is a quantum computer?

It is a computer whose elementary hardware components work according to the laws of quantum mechanics. (The hardware components of classical digital computers work according to the laws of electronic circuits.)

There is a lot more to computation than Boolean algebra! In going from classical to quantum computers, the concept of what is computable and what is not does not change, but the criteria of computational efficiency do.

Present Status

Laws of quantum mechanics are precisely known. Theoretical foundation of the subject is clear. Elementary hardware components work as predicted. Large scale integration (say 10 or more components) is a technological challenge. Threshold for quantum supremacy is on the verge of being crossed.

Still no one knows what a quantum computer will really be used for.
Early Days

In 1982, Richard Feynman taught a course at Caltech, titled “The Physics of Computation", together with John Hopfield and Carver Mead. The syllabus was vague, and various topics were covered in a chaotic manner, but the course was full of insights. He repeated the course the next year.

“Feynman Lectures on Computation” is a refined version of what was taught in that course.
Early Days

In 1982, Richard Feynman taught a course at Caltech, titled “The Physics of Computation”, together with John Hopfield and Carver Mead. The syllabus was vague, and various topics were covered in a chaotic manner, but the course was full of insights. He repeated the course the next year.

“Feynman Lectures on Computation” is a refined version of what was taught in that course.

On my Graduation day (Caltech, 1984)
It is inevitable

“Because the nature isn’t classical, damn it . . .”

—R.P. Feynman

Laws of classical physics are convenient and useful, and yet only approximations (that are not fully understood) to the underlying laws of quantum physics.

Science: Observe and explain phenomena. Theorise!
Technology: Design and control phenomena. Optimise!

Yesterday’s science becomes tomorrow’s technology.
It is inevitable

“Because the nature isn’t classical, damn it . . .”

—R.P. Feynman

Laws of classical physics are convenient and useful, and yet only approximations (that are not fully understood) to the underlying laws of quantum physics.

Science: Observe and explain phenomena. Theorise!
Technology: Design and control phenomena. Optimise!

Yesterday’s science becomes tomorrow’s technology.

Quantum effects (discreteness, dispersion, tunnelling etc.) have been considered “undesirable nuisance” in the classical computer design.

Why not go to the other side, where classical effects (decoherence, thermal fluctuations etc.) become “undesirable nuisance” in the quantum computer design?
Shrinking computer circuits

Moore’s Law – The number of transistors on integrated circuit chips (1971-2016)

Moore’s law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore’s law.

Number of transistors on a chip doubles every two years.

1948: First transistor, size ~ 1 cm. Today: VLSI circuits, size 22 nm.

Atomic size, 0.1 nm, is not very far!

First nanotechnology, and then decoherence, will have to be conquered along the way.
It is a breakthrough

Computers are physical devices, not mere mathematical entities to implement algorithms. Quantum mechanics demonstrates that complex numbers are physical. (We nevertheless carry the burden of history in the nomenclature—“real” and “imaginary” components.)
It is a breakthrough

Computers are physical devices, not mere mathematical entities to implement algorithms. Quantum mechanics demonstrates that complex numbers are physical. (We nevertheless carry the burden of history in the nomenclature—“real” and “imaginary” components.)

Quantum mechanics is a theory of waves. Wavefunctions can superpose, interfere, disperse and so on. Waves have been widely used in communications, but hardly any use of their properties has been made in computation.
It is a breakthrough

Computers are physical devices, not mere mathematical entities to implement algorithms. Quantum mechanics demonstrates that complex numbers are physical. (We nevertheless carry the burden of history in the nomenclature—“real” and “imaginary” components.)

Quantum mechanics is a theory of waves. Wavefunctions can superpose, interfere, disperse and so on. Waves have been widely used in communications, but hardly any use of their properties has been made in computation.

Superposition allows multiple signals at the same point at the same time. All of them can be simultaneously processed, and any one of them can be selectively observed (e.g. radio or mobile phone transmissions). This offers an SIMD parallel computing paradigm with no extra hardware. Which algorithms can exploit this?
Computational Framework

A language is an aperiodic collection of building blocks. Information is encoded by the properties, the arrangement and the transformations of the building blocks.

Mathematical groups are useful in describing the language alphabet and grammar. Digitisation of continuous spaces (of physical properties) allows error correction.
Computational Framework

A language is an aperiodic collection of building blocks. Information is encoded by the properties, the arrangement and the transformations of the building blocks.

Mathematical groups are useful in describing the language alphabet and grammar. Digitisation of continuous spaces (of physical properties) allows error correction.

The minimal language (based on the smallest discrete group for the given task) is often the optimal language.

- Largest tolerance against errors.
- Smallest instruction set.
- High density of packing and quick operations.
- Simplest language, without need of translation.
Computational Framework

A language is an aperiodic collection of building blocks. Information is encoded by the properties, the arrangement and the transformations of the building blocks.

Mathematical groups are useful in describing the language alphabet and grammar. Digitisation of continuous spaces (of physical properties) allows error correction.

The minimal language (based on the smallest discrete group for the given task) is often the optimal language.

- Largest tolerance against errors.
- Smallest instruction set.
- High density of packing and quick operations.
- Simplest language, without need of translation.

Building blocks can have multiple properties.

- Boolean algebra: Minimal classical language for encoding information as 1-dimensional sequence of letters. Cartesian structure $({\mathbb{Z}_2}^d$ encodes d-dimensional information.
- Quantum computation: Simultaneous 0- and 1-dimensional information in qubits.
- Protein structure: Simultaneous 1- and 3-dimensional information using amino acids.
Quantum Simulations

Quantum simulations model physical systems directly into quantum hardware, but with greater freedom in the choice of parameters than the limited values the natural systems have. This is the likely area where quantum supremacy will be demonstrated.
Quantum Simulations

Quantum simulations model physical systems directly into quantum hardware, but with greater freedom in the choice of parameters than the limited values the natural systems have. This is the likely area where quantum supremacy will be demonstrated.

These simulations exploit the superposition principle and sum up many evolutionary paths in one go, whereas classical systems evaluate the paths one by one.
Quantum Simulations

Quantum simulations model physical systems directly into quantum hardware, but with greater freedom in the choice of parameters than the limited values the natural systems have. This is the likely area where quantum supremacy will be demonstrated.

These simulations exploit the superposition principle and sum up many evolutionary paths in one go, whereas classical systems evaluate the paths one by one.

Although, in the 2^n-dimensional Hilbert space of n qubits, we can superpose 2^n components evolving in parallel, we can measure only n binary observables at the end.

So the exponential gain of superposition is limited by the restriction to extract only a small number of output results.
Quantum Simulations

Quantum simulations model physical systems directly into quantum hardware, but with greater freedom in the choice of parameters than the limited values the natural systems have. This is the likely area where quantum supremacy will be demonstrated.

These simulations exploit the superposition principle and sum up many evolutionary paths in one go, whereas classical systems evaluate the paths one by one.

Although, in the 2^n-dimensional Hilbert space of n qubits, we can superpose 2^n components evolving in parallel, we can measure only n binary observables at the end.

So the exponential gain of superposition is limited by the restriction to extract only a small number of output results.

Efficient algorithms, in terms of both the input size and the output size, have been constructed for several linear algebra problems. They need local interactions and k-local observables.
Quantum Algorithms

- Periodic patterns are easily found by Fourier Transform, which is a familiar unitary operation in quantum theory.

Shor's factorisation algorithm uses quantum Fourier transform for exponential speed up.
Quantum Algorithms

- Periodic patterns are easily found by Fourier Transform, which is a familiar unitary operation in quantum theory.
 Shor's factorisation algorithm uses quantum Fourier transform for exponential speed up.

- Grover's quantum search algorithm for an unsorted database executes a directed search along a geodesic.
 A single target among N items can be located with $O(\sqrt{N})$ oracle queries.
 The algorithm is highly robust. A quantum database does not need sorting.
Quantum Algorithms

• Periodic patterns are easily found by Fourier Transform, which is a familiar unitary operation in quantum theory. Shor’s factorisation algorithm uses quantum Fourier transform for exponential speed up.

• Grover’s quantum search algorithm for an unsorted database executes a directed search along a geodesic. A single target among N items can be located with $O(\sqrt{N})$ oracle queries. The algorithm is highly robust. A quantum database does not need sorting.

• Random walks represent a diffusion process. Classical diffusion operator is the Laplacian: $\frac{\partial P}{\partial t} = \nabla^2 P$. $E(\vec{k}) \propto |\vec{k}|^2$ produces the characteristic Brownian motion signature: $distance \propto \sqrt{time}$. Relativistic quantum evolution with $E(\vec{k}) \propto |\vec{k}|$ produces the signature: $distance \propto time$

Any NP-complete problem speeds up at least quadratically.
Quantum Algorithms

- Periodic patterns are easily found by Fourier Transform, which is a familiar unitary operation in quantum theory.
 Shor’s factorisation algorithm uses quantum Fourier transform for exponential speed up.

- Grover’s quantum search algorithm for an unsorted database executes a directed search along a geodesic.
 A single target among N items can be located with $O(\sqrt{N})$ oracle queries.
 The algorithm is highly robust. A quantum database does not need sorting.

- Random walks represent a diffusion process.
 Classical diffusion operator is the Laplacian: $\frac{\partial P}{\partial t} = \nabla^2 P$.

 $E(\vec{k}) \propto |\vec{k}|^2$ produces the characteristic Brownian motion signature: $distance \propto \sqrt{time}$

 Relativistic quantum evolution with $E(\vec{k}) \propto |\vec{k}|$ produces the signature: $distance \propto time$

 Any NP-complete problem speeds up at least quadratically.

- Multi-fermion wavefunctions are totally antisymmetric determinants (easy to compute).
 Multi-boson wavefunctions are completely symmetric permanents (hard to compute).

 Boson sampling with n identical photons naturally generates $n!$-component symmetric state.
Grover Search (An Example)

The key feature of the algorithm is wave dynamics, and not entanglement. Using a single oracle call, the algorithm identifies 1 out of 4 items in the database. In contrast, a Boolean algorithm identifies only 1 out of 2 items.

<table>
<thead>
<tr>
<th>Amplitudes</th>
<th>Algorithmic Steps</th>
<th>Physical Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Uniform distribution</td>
<td>Equilibrium configuration</td>
</tr>
</tbody>
</table>

(The first item is desired by the oracle. The dashed line denotes the average amplitude.)
The key feature of the algorithm is wave dynamics, and not entanglement. Using a single oracle call, the algorithm identifies 1 out of 4 items in the database. In contrast, a Boolean algorithm identifies only 1 out of 2 items.

<table>
<thead>
<tr>
<th>Amplitudes</th>
<th>Physical Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform distribution</td>
<td>Equilibrium configuration</td>
</tr>
<tr>
<td>Quantum oracle</td>
<td>Binary question</td>
</tr>
<tr>
<td>Amplitude of desired state flipped in sign</td>
<td>Sudden perturbation</td>
</tr>
</tbody>
</table>

(The first item is desired by the oracle. The dashed line denotes the average amplitude.)
Grover Search (An Example)

The key feature of the algorithm is wave dynamics, and not entanglement. Using a single oracle call, the algorithm identifies 1 out of 4 items in the database. In contrast, a Boolean algorithm identifies only 1 out of 2 items.

(The first item is desired by the oracle. The dashed line denotes the average amplitude.)
Grover Search (An Example)

The key feature of the algorithm is wave dynamics, and not entanglement. Using a single oracle call, the algorithm identifies 1 out of 4 items in the database. In contrast, a Boolean algorithm identifies only 1 out of 2 items.

<table>
<thead>
<tr>
<th>Amplitudes</th>
<th>Algorithmic Steps</th>
<th>Physical Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Uniform distribution</td>
<td>Equilibrium configuration</td>
</tr>
<tr>
<td>0</td>
<td>Quantum oracle</td>
<td>Binary question</td>
</tr>
<tr>
<td>0.25</td>
<td>Amplitude of desired state flipped in sign</td>
<td>Sudden perturbation</td>
</tr>
<tr>
<td>0</td>
<td>Reflection about average</td>
<td>Overrelaxation</td>
</tr>
<tr>
<td>0.25</td>
<td>Desired state reached</td>
<td>Opposite end of oscillation</td>
</tr>
<tr>
<td>0</td>
<td>Algorithm is stopped</td>
<td>Measurement</td>
</tr>
</tbody>
</table>

(The first item is desired by the oracle. The dashed line denotes the average amplitude.)
A mechanical model

Grover’s algorithm is an amplitude amplification process. A system of coupled wave modes can execute it, provided
(1) Superposition of modes maintains phase coherence.
(2) The two reflection operations (phase changes of π for the appropriate mode) can be efficiently implemented.
A mechanical model

Grover’s algorithm is an amplitude amplification process. A system of coupled wave modes can execute it, provided (1) Superposition of modes maintains phase coherence. (2) The two reflection operations (phase changes of π for the appropriate mode) can be efficiently implemented.

In the quantum version, $|A|^2$ gives the probability of a state, and the algorithm solves the database search problem. In the classical wave version, $|A|^2$ gives the energy of a mode, and the algorithm provides the fastest method for energy redistribution through the phenomenon of beats.
A mechanical model

Grover’s algorithm is an amplitude amplification process. A system of coupled wave modes can execute it, provided
(1) Superposition of modes maintains phase coherence.
(2) The two reflection operations (phase changes of π for the appropriate mode) can be efficiently implemented.

In the quantum version, $|A|^2$ gives the probability of a state, and the algorithm solves the database search problem.
In the classical wave version, $|A|^2$ gives the energy of a mode, and the algorithm provides the fastest method for energy redistribution through the phenomenon of beats.

Possible Uses

• Focusing of energy can be used as a selective switch.
• Energy amplification can speed up catalytic processes.
• Fast dispersal of energy can be used in shock absorbers.
Identical coupling between a set of oscillators can be arranged by attaching them to a big oscillator through the centre-of-mass mode.

Elastic reflection of an oscillator implements the binary oracle in momentum space. Evolution by half an oscillation period implements the reflection about average operation.
Identical coupling between a set of oscillators can be arranged by attaching them to a big oscillator through the centre-of-mass mode.

Elastic reflection of an oscillator implements the binary oracle in momentum space. Evolution by half an oscillation period implements the reflection about average operation.

A hierarchical system of oscillators—four small ones coupled to a big one at every level with appropriate mass, spring and damping parameters—can be a practical model.

The initial impulse is taken to be a local disturbance, which subsequently spreads out.
Genetic languages

1. What is the information processing task carried out by the genetic machinery of every living organism?
 Assembling molecules by picking up components from an unsorted database.

2. What is the optimal way of carrying out this task?
 Lov Grover’s quantum search algorithm. (Requires wave dynamics.)

3. What is the signature of this algorithm?

\[
(2Q + 1) \sin^{-1} \frac{1}{\sqrt{N}} = \frac{\pi}{2} \implies \begin{cases}
Q = 1, & N = 4 \\
Q = 2, & N = 10.5 \\
Q = 3, & N = 20.2
\end{cases}
\]
Genetic languages

1. What is the information processing task carried out by the genetic machinery of every living organism?
 Assembling molecules by picking up components from an unsorted database.

2. What is the optimal way of carrying out this task?
 Lov Grover’s quantum search algorithm. (Requires wave dynamics.)

3. What is the signature of this algorithm?
 \[(2Q + 1) \sin^{-1} \frac{1}{\sqrt{N}} = \frac{\pi}{2} \implies \begin{cases} Q = 1, & N=4 \\ Q = 2, & N=10.5 \\ Q = 3, & N=20.2 \end{cases}\]

Molecular biology is a nanotechnology that has worked for billions of years and in an amazing variety of circumstances. Darwinian evolution has optimised its basic processes to their essentially universal forms.

Classically, two nucleotide bases (one complementary pair) are sufficient to encode the genetic information. What led nature to complicate this simpler system?
Genetic languages

1. What is the information processing task carried out by the genetic machinery of every living organism?
 Assembling molecules by picking up components from an unsorted database.

2. What is the optimal way of carrying out this task?
 Lov Grover’s quantum search algorithm. (Requires wave dynamics.)

3. What is the signature of this algorithm?
 \[(2Q + 1) \sin^{-1} \frac{1}{\sqrt{N}} = \frac{\pi}{2} \implies \begin{cases} Q = 1, & N=4 \\ Q = 2, & N=10.5 \\ Q = 3, & N=20.2 \end{cases}\]

Molecular biology is a nanotechnology that has worked for billions of years and in an amazing variety of circumstances. Darwinian evolution has optimised its basic processes to their essentially universal forms.

Classically, two nucleotide bases (one complementary pair) are sufficient to encode the genetic information. What led nature to complicate this simpler system?

Telltale signatures of wave dynamics (vibronic modes) are present in:
- Enzyme catalysis, photosynthesis, olfaction, magnetoreception by birds.
Quantum Technologies

The field of quantum technologies is poised for significant breakthroughs in the coming years. Many organizations have formulated detailed roadmaps.

Europe roadmap: https://arXiv.org/abs/1712.03773
Quantum Technologies

The field of quantum technologies is poised for significant breakthroughs in the coming years. Many organizations have formulated detailed roadmaps.

Europe roadmap: https://arXiv.org/abs/1712.03773

The essential features that contribute to these technologies are superposition, entanglement, squeezing and tunneling of quantum states.
Quantum Technologies

The field of quantum technologies is poised for significant breakthroughs in the coming years. Many organizations have formulated detailed roadmaps.

Europe roadmap: https://arXiv.org/abs/1712.03773

The essential features that contribute to these technologies are superposition, entanglement, squeezing and tunneling of quantum states.

Practical applications are expected to appear
• first in sensing and metrology,
• then in communications and simulations,
• then as feedback to foundations of quantum theory,
• and ultimately in computation.
Quantum Technologies

The field of quantum technologies is poised for significant breakthroughs in the coming years. Many organizations have formulated detailed roadmaps.

Europe roadmap: https://arXiv.org/abs/1712.03773

The essential features that contribute to these technologies are superposition, entanglement, squeezing and tunneling of quantum states.

Practical applications are expected to appear
- first in sensing and metrology,
- then in communications and simulations,
- then as feedback to foundations of quantum theory,
- and ultimately in computation.

Developments in quantum technologies will also push classical technologies in new directions.
Sensors and Metrology

High accuracy measurements have wide ranging applications from fundamental science to engineering and biology.
Sensors and Metrology

High accuracy measurements have wide ranging applications from fundamental science to engineering and biology.

- Atomic clock precision can reach the Heisenberg limit.

 GPS accuracy can be improved by an order of magnitude.
Sensors and Metrology

High accuracy measurements have wide ranging applications from fundamental science to engineering and biology.

- Atomic clock precision can reach the Heisenberg limit.
 GPS accuracy can be improved by an order of magnitude.

- Nitrogen vacancy centres in diamond are highly sensitive and robust magnetometers.
 MRI scanners can be reduced to hand-held devices.
Sensors and Metrology

High accuracy measurements have wide ranging applications from fundamental science to engineering and biology.

- Atomic clock precision can reach the Heisenberg limit. GPS accuracy can be improved by an order of magnitude.
- Nitrogen vacancy centres in diamond are highly sensitive and robust magnetometers. MRI scanners can be reduced to hand-held devices.
- Silicon vacancy centres in diamond have high coherence, useful in forming quantum memories and networks.
Sensors and Metrology

High accuracy measurements have wide ranging applications from fundamental science to engineering and biology.

- Atomic clock precision can reach the Heisenberg limit. GPS accuracy can be improved by an order of magnitude.

- Nitrogen vacancy centres in diamond are highly sensitive and robust magnetometers. MRI scanners can be reduced to hand-held devices.

- Silicon vacancy centres in diamond have high coherence, useful in forming quantum memories and networks.

- Multi-path atom interferometers can be used for precise inertial navigation (measuring acceleration and rotation). This would bypass reliance on GPS networks. Adaption for use as gravimeters is possible.
Sensors and Metrology

High accuracy measurements have wide ranging applications from fundamental science to engineering and biology.

• Atomic clock precision can reach the Heisenberg limit. GPS accuracy can be improved by an order of magnitude.

• Nitrogen vacancy centres in diamond are highly sensitive and robust magnetometers. MRI scanners can be reduced to hand-held devices.

• Silicon vacancy centres in diamond have high coherence, useful in forming quantum memories and networks.

• Multi-path atom interferometers can be used for precise inertial navigation (measuring acceleration and rotation). This would bypass reliance on GPS networks. Adaption for use as gravimeters is possible.

• Precise electromechanical nanosensors can be made with 2D materials (involving both photons and phonons).
Sensors and Metrology

High accuracy measurements have wide ranging applications from fundamental science to engineering and biology.

- **Atomic clock precision can reach the Heisenberg limit.**

 GPS accuracy can be improved by an order of magnitude.

- **Nitrogen vacancy centres in diamond are highly sensitive and robust magnetometers.**

 MRI scanners can be reduced to hand-held devices.

- **Silicon vacancy centres in diamond have high coherence, useful in forming quantum memories and networks.**

- **Multi-path atom interferometers can be used for precise inertial navigation (measuring acceleration and rotation).**

 This would bypass reliance on GPS networks. Adaptation for use as gravimeters is possible.

- **Precise electromechanical nanosensors can be made with 2D materials (involving both photons and phonons).**

- **Quantum imaging with entangled photons can be highly accurate.**

 Quantum precision is $1/N$, compared to classical $1/\sqrt{N}$ scaling of central limit theorem.
References

All papers are easily accessible at http://arXiv.org/

Hardware Design Criteria

Experimental setups need to meet the following conditions, in order to perform as reliable quantum computers.

—D.P. DiVincenzo
Hardware Design Criteria

Experimental setups need to meet the following conditions, in order to perform as reliable quantum computers.

—D.P. DiVincenzo

• A scalable physical system with well characterized qubits.
• The ability to initialize the state of the qubits to a simple fiducial state (e.g. the ground state).
• Long decoherence time compared to logic operation time.
• An addressable universal set of quantum gates.
• A qubit-specific measurement capability.
• The ability to interconvert stationary and flying qubits (for communication between CPU and memory).
• The ability to faithfully transmit flying qubits between specified locations (as replacement for wires).
Hardware Design Criteria

Experimental setups need to meet the following conditions, in order to perform as reliable quantum computers.

—D.P. DiVincenzo

- A scalable physical system with well characterized qubits.
- The ability to initialize the state of the qubits to a simple fiducial state (e.g. the ground state).
- Long decoherence time compared to logic operation time.
- An addressable universal set of quantum gates.
- A qubit-specific measurement capability.
- The ability to interconvert stationary and flying qubits (for communication between CPU and memory).
- The ability to faithfully transmit flying qubits between specified locations (as replacement for wires).

Error correction needs discrete variables with error rate below a particular threshold.
Qubit Count

http://quantumcomputingreport.com/scorecards/qubit-count/ (Jan 2018)

<table>
<thead>
<tr>
<th>Company</th>
<th>Type</th>
<th>Technology</th>
<th>Now</th>
<th>Next Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel</td>
<td>Gate</td>
<td>Superconducting</td>
<td>49</td>
<td>TBD</td>
</tr>
<tr>
<td>Google</td>
<td>Gate</td>
<td>Superconducting</td>
<td>72</td>
<td>TBD</td>
</tr>
<tr>
<td>IBM</td>
<td>Gate</td>
<td>Superconducting</td>
<td>50</td>
<td>TBD</td>
</tr>
<tr>
<td>Rigetti</td>
<td>Gate</td>
<td>Superconducting</td>
<td>19</td>
<td>TBD</td>
</tr>
<tr>
<td>USTC (China)</td>
<td>Gate</td>
<td>Superconducting</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>IonQ</td>
<td>Gate</td>
<td>Ion Trap</td>
<td>7</td>
<td>20-50</td>
</tr>
<tr>
<td>Silicon Quantum Computing Pty</td>
<td>Gate</td>
<td>Spin</td>
<td>N/A</td>
<td>10</td>
</tr>
<tr>
<td>Univ. of Wisconsin</td>
<td>Gate</td>
<td>Neutral Atoms</td>
<td>49</td>
<td>TBD</td>
</tr>
<tr>
<td>Harvard/MIT</td>
<td>Quantum</td>
<td>Rydberg Atoms</td>
<td>51</td>
<td>TBD</td>
</tr>
<tr>
<td>Univ. of Maryland / NIST</td>
<td>Quantum</td>
<td>Ion Trap</td>
<td>53</td>
<td>TBD</td>
</tr>
<tr>
<td>D-Wave</td>
<td>Annealing</td>
<td>Superconducting</td>
<td>2048</td>
<td>5000</td>
</tr>
<tr>
<td>iARPA QEO Research Program</td>
<td>Annealing</td>
<td>Superconducting</td>
<td>N/A</td>
<td>100</td>
</tr>
<tr>
<td>NTT/Univ. of Tokyo/Japan NII</td>
<td>Qtm Neural Network</td>
<td>Photonic</td>
<td>2048</td>
<td>100,000</td>
</tr>
<tr>
<td>Fujitsu</td>
<td>Digital</td>
<td>Classical</td>
<td>1024</td>
<td>100,000</td>
</tr>
<tr>
<td>IBM Research</td>
<td>Annealer</td>
<td>Classical</td>
<td>56</td>
<td>N/A</td>
</tr>
<tr>
<td>Microsoft – PC</td>
<td>Software</td>
<td>Classical</td>
<td>30</td>
<td>N/A</td>
</tr>
<tr>
<td>Microsoft – Azure</td>
<td>Software</td>
<td>Classical</td>
<td>40</td>
<td>N/A</td>
</tr>
<tr>
<td>Rigetti – Forest</td>
<td>Software</td>
<td>Classical</td>
<td>36</td>
<td>N/A</td>
</tr>
<tr>
<td>ETH Zurich</td>
<td>Software</td>
<td>Classical</td>
<td>45</td>
<td>N/A</td>
</tr>
<tr>
<td>Atos</td>
<td>Software</td>
<td>Classical</td>
<td>40</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Qubit Quality

[Check the original report for the latest updates](http://quantumcomputingreport.com/scorecards/qubit-quality/) (Jan 2018)

<table>
<thead>
<tr>
<th>Computer</th>
<th>Qubit Count</th>
<th>Connectivity</th>
<th>T1 (µsec)</th>
<th>T2/T2* (µsec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM QX2</td>
<td>5</td>
<td>2 4</td>
<td>2.4 44.9</td>
<td>63.1 53.2 27.7 61.4 44.5</td>
</tr>
<tr>
<td>IBM QX4</td>
<td>5</td>
<td>2 4</td>
<td>2.4 36.2</td>
<td>54.8 48.1 14.9 55.7 31.1</td>
</tr>
<tr>
<td>IBM QX5</td>
<td>16</td>
<td>2 3</td>
<td>2.75 28.3</td>
<td>69.9 42.8 14.5 127.3 59.0</td>
</tr>
<tr>
<td>IBM QS1_1</td>
<td>20</td>
<td>2 6</td>
<td>3.9 47.5</td>
<td>173.5 80.1 15.6 94.2 41.3</td>
</tr>
<tr>
<td>Rigetti 19Q</td>
<td>20</td>
<td>2 6</td>
<td>3.9 47.5</td>
<td>173.5 80.1 15.6 94.2 41.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer</th>
<th>1-Qubit Gate Fidelity</th>
<th>2-Qubit Gate Fidelity</th>
<th>Read Out Fidelity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM QX2</td>
<td>99.71% 99.88% 99.79%</td>
<td>94.22% 97.12% 95.33%</td>
<td>92.20% 98.20% 96.24%</td>
</tr>
<tr>
<td>IBM QX4</td>
<td>99.83% 99.96% 99.88%</td>
<td>95.11% 98.39% 97.11%</td>
<td>94.80% 97.10% 95.60%</td>
</tr>
<tr>
<td>IBM QX5</td>
<td>99.59% 99.87% 99.77%</td>
<td>91.98% 97.29% 95.70%</td>
<td>88.53% 96.66% 93.32%</td>
</tr>
<tr>
<td>IBM QS1_1</td>
<td>96.93% 99.92% 99.48%</td>
<td>82.28% 98.87% 95.68%</td>
<td>69.05% 93.55% 83.95%</td>
</tr>
</tbody>
</table>

- Fault tolerant quantum computers need error rate \(< \sim 10^{-3} - 10^{-4} \) (local qubits)
- \(~10^{-2} \) (topological qubits)

Number of logical qubits reached so far is ZERO.