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Computation

Any physical process evolves an initial state to a final state
under the influence of certain interactions.

Initial state −→ Interactions −→ Final state
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The meaning arises from mapping physical properties
(hardware) to mathematical terminology (software).
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Computation

Any physical process evolves an initial state to a final state
under the influence of certain interactions.

Initial state −→ Interactions −→ Final state

A computer processes the given input to an output
according to specified instructions.

Input −→ Processing −→ Output

It purposefully processes meaningful information.
The meaning arises from mapping physical properties
(hardware) to mathematical terminology (software).

The availability of different physical interactions makes it
possible to design different types of computers.
Communication is the special case where processing is limited to coding and decoding.
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Designing a Computer
Computation is Processing and Communication of
Semantic Information expressed using a Language.

One finds examples of many types of information
processing systems in the physical world.

How can a general information theory be systematically
developed to cover all types of computational schemes?
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Optimisation requires minimisation of physical resources
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Designing a Computer
Computation is Processing and Communication of
Semantic Information expressed using a Language.

One finds examples of many types of information
processing systems in the physical world.

How can a general information theory be systematically
developed to cover all types of computational schemes?

How can one design the optimal computer for a given task?

Optimisation requires minimisation of physical resources
(versatile composition) and control of errors (digitisation).

These criteria often conflict, and trade-offs are necessary.

Efficiency of information processing depends on both the
available hardware and the possible software.

Software: What is the task? What is the algorithm?
Hardware: How are the operations implemented?
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Technical Terms
Data: They describe a particular realisation of the physical
system, amongst its many possible states.
Information: It is the abstract mathematical property
obtained by detaching all the physical characteristics from
data.
Knowledge: It is obtained by adding a sense of purpose to
the abstract information.
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Technical Terms
Data: They describe a particular realisation of the physical
system, amongst its many possible states.
Information: It is the abstract mathematical property
obtained by detaching all the physical characteristics from
data.
Knowledge: It is obtained by adding a sense of purpose to
the abstract information.

Information = Data - Physical Realisation
Knowledge = Information + Interpretation

Physical
Device

Data - Knowledge-

Instructions
?

Oracles/Look-up Tables
6
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Importance of Physics
1. Abstract information can be manipulated with precise

mathematical rules, without going into nitty-gritty of its
origin or meaning.

2. The manipulations can only be implemented using
physical devices.

3. The interpretation of a language has to be established
through physical properties.

Physical hardware properties govern the expression and the grammar of the language.
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Importance of Physics
1. Abstract information can be manipulated with precise

mathematical rules, without going into nitty-gritty of its
origin or meaning.

2. The manipulations can only be implemented using
physical devices.

3. The interpretation of a language has to be established
through physical properties.

Physical hardware properties govern the expression and the grammar of the language.

Abstract information theory does not tell us what physical
realisation would be appropriate for a particular message,
nor does it tell us the best way of implementing a
computational task.

These choices have to be made by analysing the type (and
not the amount) of information, and checking how that can
be mapped to the available physical resources.
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An Example from Biology
A plant attracts an insect to its flower.

Purpose: Pollination for plant, food for insect.
Task: Convey existance, direction and distance.
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An Example from Biology
A plant attracts an insect to its flower.

Purpose: Pollination for plant, food for insect.
Task: Convey existance, direction and distance.

Existence: Expressed by the three-dimensional structure of
fragrant molecules, using lock-and-key mechanism.
Direction: Plant releases millions of fragrant molecules.
Insect detects gradients (parallax) with multiple receptors.
Distance: Infered from concentration of fragrant molecules.

Language: Arrived at by millions of years of coevolution,
and stored in the genomes.
Resources: Massively redundant communication process
optimised by going down all the way to atomic scale.
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An Example from Biology
A plant attracts an insect to its flower.

Purpose: Pollination for plant, food for insect.
Task: Convey existance, direction and distance.

Existence: Expressed by the three-dimensional structure of
fragrant molecules, using lock-and-key mechanism.
Direction: Plant releases millions of fragrant molecules.
Insect detects gradients (parallax) with multiple receptors.
Distance: Infered from concentration of fragrant molecules.

Language: Arrived at by millions of years of coevolution,
and stored in the genomes.
Resources: Massively redundant communication process
optimised by going down all the way to atomic scale.

Mobile phones convey existence (followed by two-way
communication), but direction and distance are ignored.
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Minimal Language
The language with the smallest set of building blocks
(for a given task) is unique in the optimisation procedure.

• Largest tolerance against errors.
(Discrete variables are spread as far apart as possible
in the available range of physical hardware properties.)

• Smallest instruction set.
(Number of possible transformations is limited.)

• High density of packing and quick operations.
(These more than make up for the increased depth of
computation.)

• Simplest language, without need of translation.
(Simple physical responses of the hardware can be used.)
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Minimal Language
The language with the smallest set of building blocks
(for a given task) is unique in the optimisation procedure.

• Largest tolerance against errors.
(Discrete variables are spread as far apart as possible
in the available range of physical hardware properties.)

• Smallest instruction set.
(Number of possible transformations is limited.)

• High density of packing and quick operations.
(These more than make up for the increased depth of
computation.)

• Simplest language, without need of translation.
(Simple physical responses of the hardware can be used.)

Boolean algebra provides the minimal classical language
for encoding information as 1-dimensional sequences.
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General Computational Framework

Generalise the concept of a language, from a
“sequence of letters” to a “collection of building blocks”.
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General Computational Framework

Generalise the concept of a language, from a
“sequence of letters” to a “collection of building blocks”.

Collections: The building blocks can be arranged in the
space-time in many different ways.
Building blocks: Physical properties (generically encoded
using groups) express the meaning of the building blocks.
Processing: Allowed changes in the properties of building
blocks exhaust the possible manipulations of information.

Group representations fix the structure of the language,
and group transformations provide the rules for processing
information.

. . . contd.

Quantum Information – p.8/22



For a given task, the smallest discrete group that can
implement it is the ideal candidate for the optimal language.

In digitisation of continuous spaces (of physical properties),
a discrete state is associated not with just a point on the
manifold but with a finite neighbourhood of a point.
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For a given task, the smallest discrete group that can
implement it is the ideal candidate for the optimal language.

In digitisation of continuous spaces (of physical properties),
a discrete state is associated not with just a point on the
manifold but with a finite neighbourhood of a point.

For a d-dim space, the simplest building block is a simplex,
i.e. a set of (d+ 1) points.

The dimension of a group is the number of its generators.
In the dual description, the minimal building block set is the
d-dim fundamental representation and the 1-dim identity
representation.
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For a given task, the smallest discrete group that can
implement it is the ideal candidate for the optimal language.

In digitisation of continuous spaces (of physical properties),
a discrete state is associated not with just a point on the
manifold but with a finite neighbourhood of a point.

For a d-dim space, the simplest building block is a simplex,
i.e. a set of (d+ 1) points.

The dimension of a group is the number of its generators.
In the dual description, the minimal building block set is the
d-dim fundamental representation and the 1-dim identity
representation.

In the smallest discrete realisation, the entire group is
replaced by a single simplex. A collection of simplices
can then represent any quantity to the desired precision
(e.g. the place value system for numbers).
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Types of Collections
0 − dim: Multiple signals at the same point in space and
time, i.e. superposition. Different states of internal degrees
of freedom encode different signals. Only one signal can be
extracted at a time.
Examples: Radio broadcasts, Mobile phones.
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Types of Collections
0 − dim: Multiple signals at the same point in space and
time, i.e. superposition. Different states of internal degrees
of freedom encode different signals. Only one signal can be
extracted at a time.
Examples: Radio broadcasts, Mobile phones.

1 − dim: Building blocks arranged as an ordered sequence.
This tensor product structure is routinely used in
conventional information theory.
Examples: Written languages (sequence in space),

Spoken languages (sequence in time).

2 − dim: Combination of multiple ordered sequences.
Information can reside in correlations amongst sequences
without being present in any individual sequence.
Examples: Eyes and ears, Space-time codes,

Parallax and gradient detection.
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Types of Collections (contd.)
3 − dim: Building blocks encode structural information,
for establishing lock and key mechanisms.
Examples: Proteins and other biomolecules.
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Examples: Proteins and other biomolecules.

4 − dim: Complete description of any space-time event in
our universe.
Example: Global positioning system (GPS).
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3 − dim: Building blocks encode structural information,
for establishing lock and key mechanisms.
Examples: Proteins and other biomolecules.

4 − dim: Complete description of any space-time event in
our universe.
Example: Global positioning system (GPS).

Simultaneous use of multiple dimensionalities is also
possible, with building blocks having multiple properties!
Examples: Quantum computers (0 and 1 dim),

Proteins (1 and 3 dim).
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Types of Collections (contd.)
3 − dim: Building blocks encode structural information,
for establishing lock and key mechanisms.
Examples: Proteins and other biomolecules.

4 − dim: Complete description of any space-time event in
our universe.
Example: Global positioning system (GPS).

Simultaneous use of multiple dimensionalities is also
possible, with building blocks having multiple properties!
Examples: Quantum computers (0 and 1 dim),

Proteins (1 and 3 dim).

Particle features: Countability, Order, Number density,
Shape, Structure.

Wave features: Superposition, Differential analysis
(parallax), Interference (multiple paths).
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Types of Building Blocks

A combination of properties, in both internal and external
space, can be used to describe distinguishable objects.
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Types of Building Blocks

A combination of properties, in both internal and external
space, can be used to describe distinguishable objects.

1 − dim: Groups with a single generator include
cyclic groups, integers and the real line.
The minimal simplex is Z2 = {0, 1}.
The binary language can be extended to a d-dim situation,
as the Cartesian product (Z2)

d, and is therefore convenient
as a general purpose language.
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Types of Building Blocks

A combination of properties, in both internal and external
space, can be used to describe distinguishable objects.

1 − dim: Groups with a single generator include
cyclic groups, integers and the real line.
The minimal simplex is Z2 = {0, 1}.
The binary language can be extended to a d-dim situation,
as the Cartesian product (Z2)

d, and is therefore convenient
as a general purpose language.

2 − dim: The simplex is a triangle. Triangulation (or its
dual hexagonal form) is useful for discrete description of
arbitrary surfaces. Graphene structure may become useful
in atomic scale lithography.
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Types of Building Blocks (contd.)

3 − dim: The simplex is a tetrahedron. At molecular scale,
sp3-hybridised orbitals provide its dual form. Tetrahedral
geometry of carbon provides a convenient way to
understand the 3-dim language of proteins.
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Types of Building Blocks (contd.)

3 − dim: The simplex is a tetrahedron. At molecular scale,
sp3-hybridised orbitals provide its dual form. Tetrahedral
geometry of carbon provides a convenient way to
understand the 3-dim language of proteins.

SU(2): Description of quantum bits is based on this group
with three generators. Arbitrary states of a qubit (including
mixed states) can be fully described using a density matrix,
which is a linear combination of the four operators
{1, σx, σy, σz}. (Four real numbers ≡ Two complex numbers)
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Types of Building Blocks (contd.)

3 − dim: The simplex is a tetrahedron. At molecular scale,
sp3-hybridised orbitals provide its dual form. Tetrahedral
geometry of carbon provides a convenient way to
understand the 3-dim language of proteins.

SU(2): Description of quantum bits is based on this group
with three generators. Arbitrary states of a qubit (including
mixed states) can be fully described using a density matrix,
which is a linear combination of the four operators
{1, σx, σy, σz}. (Four real numbers ≡ Two complex numbers)

Larger groups have been used in error correcting codes
and cryptography, but not for processing information.
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Types of Processing
0 − dim: Only mathematical operation allowed with
superposition is addition.
It is commutative and produces interference effects.
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Types of Processing
0 − dim: Only mathematical operation allowed with
superposition is addition.
It is commutative and produces interference effects.

1 − dim: Z2 is a field—the smallest one. It allows
two different commutative operations, addition and
multiplication, which are the basis of all our arithmetic.
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Types of Processing
0 − dim: Only mathematical operation allowed with
superposition is addition.
It is commutative and produces interference effects.

1 − dim: Z2 is a field—the smallest one. It allows
two different commutative operations, addition and
multiplication, which are the basis of all our arithmetic.

d > 1: In higher dimensions, addition generalises to
translation, and multiplication to scale transformation.
But rotations appear as well (non-commutative for d > 2).
Algebra generated by lattice transformations is
much more powerful than common arithmetic.

More and more group operations become possible
with increasing dimensionality.

Quantum Information – p.14/22



Quantum Computation
Inevitable: Technological progress in controlling devices
with shrinking sizes is taking us to the quantum domain.

Breakthrough: Quantum algorithms are better at carrying
out computational tasks than their classical counterparts.
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Quantum Computation
Inevitable: Technological progress in controlling devices
with shrinking sizes is taking us to the quantum domain.

Breakthrough: Quantum algorithms are better at carrying
out computational tasks than their classical counterparts.

Classical (particle dynamics):
Discrete Boolean logic is implemented using digital circuits.

Wave (classical wave dynamics):
Analog variables can superpose, interfere, disperse etc.,
and are convenient for differentiation and integration.
Waves have been widely used in communications, and in simple analog computers

(e.g. RLC circuits), but they have been left out of digital computation.
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Quantum Computation
Inevitable: Technological progress in controlling devices
with shrinking sizes is taking us to the quantum domain.

Breakthrough: Quantum algorithms are better at carrying
out computational tasks than their classical counterparts.

Classical (particle dynamics):
Discrete Boolean logic is implemented using digital circuits.

Wave (classical wave dynamics):
Analog variables can superpose, interfere, disperse etc.,
and are convenient for differentiation and integration.
Waves have been widely used in communications, and in simple analog computers

(e.g. RLC circuits), but they have been left out of digital computation.

Quantum (particle+wave dynamics):
Unitary evolution is implemented using quantum states.
Combination of particle and wave properties produces
unusual correlations called entanglement.
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Basics
The simplest quantum system is a qubit, with two basis
vectors |0〉 and |1〉 (e.g. | ↑〉 and | ↓〉 for an electron spin).
A generic qubit state is a 2-dim complex unit vector.

|q〉 = α|0〉 + β|1〉, |α|2 + |β|2 = 1.

A quantum register is an ordered string of n qubits.
It is a complex unit vector in the 2n-dim Hilbert space.

|x〉 =
1

∑

i1,i2...in=0

ci1i2...in|xi1〉|xi2〉 . . . |xin〉,
1

∑

i1,i2...in=0

|ci1i2...in|2 = 1.
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Basics
The simplest quantum system is a qubit, with two basis
vectors |0〉 and |1〉 (e.g. | ↑〉 and | ↓〉 for an electron spin).
A generic qubit state is a 2-dim complex unit vector.

|q〉 = α|0〉 + β|1〉, |α|2 + |β|2 = 1.

A quantum register is an ordered string of n qubits.
It is a complex unit vector in the 2n-dim Hilbert space.

|x〉 =
1

∑

i1,i2...in=0

ci1i2...in|xi1〉|xi2〉 . . . |xin〉,
1

∑

i1,i2...in=0

|ci1i2...in|2 = 1.

A generic instruction is a rotation of the quantum state
vector in the Hilbert space. It is a unitary transformation
that is deterministic and fully reversible.

A measurement is a projection. In the computational basis,
it yields the state |xi1〉|xi2〉 . . . |xin〉 with probability |ci1i2...in|2.
This operation is probabilistic and irreversible.
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Communication Tasks
Singlet Bell State: |ψ−〉 = (|0〉|0〉 − |1〉|1〉)/

√
2

Individual qubits behave randomly and carry no information.
But jointly the two qubits are perfectly correlated.
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Communication Tasks
Singlet Bell State: |ψ−〉 = (|0〉|0〉 − |1〉|1〉)/

√
2

Individual qubits behave randomly and carry no information.
But jointly the two qubits are perfectly correlated.

Dense coding: A Bell state exists spread over two locations.
One of the four operators {I,X,Z,XZ} is applied to the half
Bell state at one end, and the qubit is sent to the other end.
Joint Bell basis measurement of the two qubits determines
which of the four operators was applied.

|ψ−〉 −→ {|ψ−〉, |φ−〉, |ψ+〉, |φ+〉}
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Communication Tasks
Singlet Bell State: |ψ−〉 = (|0〉|0〉 − |1〉|1〉)/

√
2

Individual qubits behave randomly and carry no information.
But jointly the two qubits are perfectly correlated.

Dense coding: A Bell state exists spread over two locations.
One of the four operators {I,X,Z,XZ} is applied to the half
Bell state at one end, and the qubit is sent to the other end.
Joint Bell basis measurement of the two qubits determines
which of the four operators was applied.

|ψ−〉 −→ {|ψ−〉, |φ−〉, |ψ+〉, |φ+〉}
Teleportation: A Bell state exists spread over two locations.
The unknown state to be teleported from one end is jointly
measured with the half Bell state in Bell basis. The two-bit
measurement result sent to the other end recreates the
unknown state from the other half of the Bell state.

|α〉|ψ−〉 = (|ψ−〉|α〉+ |φ−〉X|α〉+ |ψ+〉Z|α〉+ |φ+〉ZX|α〉)/2
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Communication Tasks (contd.)
Superadditivity: More information can be sent through an
n-product channel than n times the amount that can be sent
through a single use of a channel. Quantum correlations
between the signals provide the extra channel capacity.

Zero capacity channels can be combined to obtain a
nonzero communication rate! (Signal and noise can be
separated when they have different correlation scales.)
Perfect entanglement between inputs to the channels can even eliminate the noise.
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Communication Tasks (contd.)
Superadditivity: More information can be sent through an
n-product channel than n times the amount that can be sent
through a single use of a channel. Quantum correlations
between the signals provide the extra channel capacity.

Zero capacity channels can be combined to obtain a
nonzero communication rate! (Signal and noise can be
separated when they have different correlation scales.)
Perfect entanglement between inputs to the channels can even eliminate the noise.

Classical vs. Quantum:
Shannon entropy is generalised to von Neumann entropy.

H({pi}) = −
∑

i pi log pi −→ S(ρ) = −Tr(ρ log ρ).
But a bit and a qubit are incomparable units of information.

Quantum Information – p.18/22
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n-product channel than n times the amount that can be sent
through a single use of a channel. Quantum correlations
between the signals provide the extra channel capacity.
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nonzero communication rate! (Signal and noise can be
separated when they have different correlation scales.)
Perfect entanglement between inputs to the channels can even eliminate the noise.

Classical vs. Quantum:
Shannon entropy is generalised to von Neumann entropy.

H({pi}) = −
∑

i pi log pi −→ S(ρ) = −Tr(ρ log ρ).
But a bit and a qubit are incomparable units of information.

Shannon’s theorems:
• Data compression is analogous to the classical case.
• Channel capacity is not analogous to the classical case.
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Communication Tasks (contd.)
Superadditivity: More information can be sent through an
n-product channel than n times the amount that can be sent
through a single use of a channel. Quantum correlations
between the signals provide the extra channel capacity.

Zero capacity channels can be combined to obtain a
nonzero communication rate! (Signal and noise can be
separated when they have different correlation scales.)
Perfect entanglement between inputs to the channels can even eliminate the noise.

Classical vs. Quantum:
Shannon entropy is generalised to von Neumann entropy.

H({pi}) = −
∑

i pi log pi −→ S(ρ) = −Tr(ρ log ρ).
But a bit and a qubit are incomparable units of information.

Shannon’s theorems:
• Data compression is analogous to the classical case.
• Channel capacity is not analogous to the classical case.

Input and output are always classical in problems relevent to us. Quantum Information – p.18/22



Power of One Qubit
The DQC1 model has one control qubit, n others in a fully
mixed state, and a unitary operation between them.

ρi = 1

2
(I + αX) ⊗ 1

2n I⊗n Control−Un−→ ρf = 1

2n+1

(

I⊗n αU †
n

αUn I⊗n

)

Measurement of the control qubit gives:
〈X〉 = α Re(TrUn)/2n, 〈Y 〉 = α Im(TrUn)/2n
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Power of One Qubit
The DQC1 model has one control qubit, n others in a fully
mixed state, and a unitary operation between them.

ρi = 1

2
(I + αX) ⊗ 1

2n I⊗n Control−Un−→ ρf = 1

2n+1

(

I⊗n αU †
n

αUn I⊗n

)

Measurement of the control qubit gives:
〈X〉 = α Re(TrUn)/2n, 〈Y 〉 = α Im(TrUn)/2n

There exist 2n × 2n unitary operations Un that can be
implemented using poly(n) one- and two-qubit operations,
but whose trace cannot be computed with a known poly(n)
classical algorithm. That makes the DQC1 model more
powerful than its classical counterpart.
There is no entanglement between the control qubit and the mixed state in this example.
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Database Search
Classical:
Binary tree search is the optimal classical algorithm.
A sorted database of N items can be searched using
log2N binary questions.
An unsorted database of N items can be searched using
N/2 binary questions with memory, and using N binary
questions without memory.

Quantum/Wave:
Wave mechanics works with amplitudes and not with
probabilities. Superposition of amplitudes can yield
constructive as well as destructive interference.
Optimal search solutions differ from the classical ones.

Grover’s algorithm: An unsorted database of N items can
be optimally searched using (π/4)

√
N binary questions.
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Grover’s Database Search
The steps of the algorithm for the simplest case of 4 items
in the database. Let the first item be desired by the oracle.

Amplitudes Algorithmic Steps Physical Implementation

(1) 0

0.5
Uniform
distribution

Equilibrium
configuration

?
Ub Quantum oracle Binary question

(2) 0
0.25 Amplitude of

desired state
flipped in sign

Sudden
perturbation

?

−Us Reflection
about average

Overrelaxation

(3)
0
0.25

p p p

Desired state
reached

Opposite end
of oscillation

(4) Projection Algorithm
is stopped

Measurement

(Dashed line denotes the average amplitude.)

One binary question unambiguously distinguishes 4 items.
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