
Optimisation of Quantum Hamiltonian Evolution
From two projection operators to local Hamiltonians

Apoorva Patel

Centre for High Energy Physics, Indian Institute of Science, Bangalore

23 June 2016, IQC, Waterloo, Canada

A. Patel, PoS(Lattice2014)324

A. Patel and A. Priyadarsini, arXiv:1503.01755

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 1

/ 32

Abstract

Given a quantum Hamiltonian and its evolution time, the corresponding unitary evolution

operator can be constructed in many different ways, corresponding to different trajectories

between the desired end-points and different series expansions. A choice among these

possibilities can then be made to obtain the best computational complexity and control over

errors. It is shown how a construction based on Grover’s algorithm scales linearly in time and

logarithmically in the error bound, and is exponentially superior in error complexity to the

scheme based on the straightforward application of the Lie-Trotter formula. The strategy is then

extended first to simulation of any Hamiltonian that is a linear combination of two projection

operators, and then to any local efficiently computable Hamiltonian. The key feature is to

construct an evolution in terms of the largest possible steps instead of taking small time steps.

Reflection operations and Chebyshev expansions are used to efficiently control the total error on

the overall evolution, without worrying about discretisation errors for individual steps. We also

use a digital implementation of quantum states that makes linear algebra operations rather

simple to perform.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 2

/ 32

Motivation

Richard Feynman: Quantum computers are efficient simulators of
quantum physical systems and models.

Classical simulations of quantum systems and models are not efficient.

Quantum superposition can sum multiple evolutionary paths contributing
to a quantum process in one go, while classical simulators evaluate them
one by one (as Markov chains).

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 3

/ 32

Motivation

Richard Feynman: Quantum computers are efficient simulators of
quantum physical systems and models.

Classical simulations of quantum systems and models are not efficient.

Quantum superposition can sum multiple evolutionary paths contributing
to a quantum process in one go, while classical simulators evaluate them
one by one (as Markov chains).

This advantage needs to be formalised in terms of computational
complexity, for physical Hamiltonians.
Feynman (1982), Lloyd (1996), Aharanov and Ta-Shma (2003), Berry et al. (2007, 2013)

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 3

/ 32

Motivation

Richard Feynman: Quantum computers are efficient simulators of
quantum physical systems and models.

Classical simulations of quantum systems and models are not efficient.

Quantum superposition can sum multiple evolutionary paths contributing
to a quantum process in one go, while classical simulators evaluate them
one by one (as Markov chains).

This advantage needs to be formalised in terms of computational
complexity, for physical Hamiltonians.
Feynman (1982), Lloyd (1996), Aharanov and Ta-Shma (2003), Berry et al. (2007, 2013)

Computational complexity of a problem is a measure of the physical
resources required to solve it.

Space Time Energy
Conventional software considerations do not explicitly include energy.

Tradeoffs between resources are possible depending on their availability,
e.g. space vs. time in parallel computers.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 3

/ 32

Computational Complexity

Existence of the universal Turing machine allows classification of
computational complexity without reference to hardware.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 4

/ 32

Computational Complexity

Existence of the universal Turing machine allows classification of
computational complexity without reference to hardware.

Computational complexity of a decision problem is specified in terms of
the size of its input (output size is only one bit).

Problems with different output structures are reformulated as a sequence
of decision problems, with successive verifiable bounds on the outputs (e.g.
as in binary search).

For a specified tolerance level ǫ, the corresponding output size is log ǫ.

The complexity of the original problem is then the sum of complexities of
the individual decision problems.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 4

/ 32

Computational Complexity

Existence of the universal Turing machine allows classification of
computational complexity without reference to hardware.

Computational complexity of a decision problem is specified in terms of
the size of its input (output size is only one bit).

Problems with different output structures are reformulated as a sequence
of decision problems, with successive verifiable bounds on the outputs (e.g.
as in binary search).

For a specified tolerance level ǫ, the corresponding output size is log ǫ.

The complexity of the original problem is then the sum of complexities of
the individual decision problems.

It is therefore appropriate to specify the complexity of a general problem in
terms of its input and output sizes.
This is a natural criterion for reversible computation. It is also suitable for extending finite

precision analog computation to arbitrary precision digital computation.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 4

/ 32

Algorithmic Efficiency

A computational algorithm is efficient when the required resources are
polynomial in its input and output sizes. These belong to the class P.

Nondeterministic algorithms requiring polynomial resources for verifying
the answer belong to the class NP.

Many other classes have been defined: BPP, PSPACE, EXP, . . .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 5

/ 32

Algorithmic Efficiency

A computational algorithm is efficient when the required resources are
polynomial in its input and output sizes. These belong to the class P.

Nondeterministic algorithms requiring polynomial resources for verifying
the answer belong to the class NP.

Many other classes have been defined: BPP, PSPACE, EXP, . . .

Not enough attention has been paid to the output precision in the P vs.
NP analysis. The task is relegated to analysis of numerical convergence of
algorithms.

Popular importance sampling methods are not efficient.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 5

/ 32

Algorithmic Efficiency

A computational algorithm is efficient when the required resources are
polynomial in its input and output sizes. These belong to the class P.

Nondeterministic algorithms requiring polynomial resources for verifying
the answer belong to the class NP.

Many other classes have been defined: BPP, PSPACE, EXP, . . .

Not enough attention has been paid to the output precision in the P vs.
NP analysis. The task is relegated to analysis of numerical convergence of
algorithms.

Popular importance sampling methods are not efficient.

Consider the problem of finding the zero of a function.
Multiple trials: Central limit theorem gives ǫ = ǫ0/

√
Niter ⇒ Niter ∼ ǫ−2.

Bisection: Narrowing of the interval gives ǫ = ǫ0/2
Niter ⇒ Niter ∼ log(1/ǫ).

Newton’s method: Knowledge of the derivative gives ǫ = (ǫ0)
2Niter ⇒ Niter ∼ log log(1/ǫ).

Efficient solution must exploit the structure in the problem.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 5

/ 32

Quantum Hamiltonian Simulation

Start from the initial quantum state |ψ(0)〉.
First evolve: |ψ(T)〉 = U(T)|ψ(0)〉, U(T) = P[e−i

∫ T

0 H(t)dt].
Then measure: 〈Oa〉 = 〈ψ(T)|Oa|ψ(T)〉.
In typical problems, both these parts are executed probabilistically upto a
specified tolerance level, say ǫ.

We address the first part: The problem is to determine the evolution
operator U(T), with accuracy ||Ũ(T)− U(T)|| < ǫ.

Efficient execution of the second part requires different techniques.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 6

/ 32

Quantum Hamiltonian Simulation

Start from the initial quantum state |ψ(0)〉.
First evolve: |ψ(T)〉 = U(T)|ψ(0)〉, U(T) = P[e−i

∫ T

0 H(t)dt].
Then measure: 〈Oa〉 = 〈ψ(T)|Oa|ψ(T)〉.
In typical problems, both these parts are executed probabilistically upto a
specified tolerance level, say ǫ.

We address the first part: The problem is to determine the evolution
operator U(T), with accuracy ||Ũ(T)− U(T)|| < ǫ.

Efficient execution of the second part requires different techniques.

In a finite N-dimensional Hilbert space, a generic H(t) is a dense N × N
matrix. That cannot be simulated efficiently.

Physical properties restrict the structure of H(t), however.
Efficient simulations must exploit this Hamiltonian structure.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 6

/ 32

Useful Physical Features

Features commonly present in physical problems are:

(1) The Hilbert space is a tensor product of many small components
(e.g. N = 2n for a system of qubits).

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 7

/ 32

Useful Physical Features

Features commonly present in physical problems are:

(1) The Hilbert space is a tensor product of many small components
(e.g. N = 2n for a system of qubits).

(2) The components have only local interactions
(e.g. couplings with only a limited number of neighbours).
Such sparse Hamiltonians have O(N) non-zero elements in the component basis.

“Local basis structure” can appear in different forms.
e.g. factorisable dense operator in FFT, multipole expansions for smooth long range interactions.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 7

/ 32

Useful Physical Features

Features commonly present in physical problems are:

(1) The Hilbert space is a tensor product of many small components
(e.g. N = 2n for a system of qubits).

(2) The components have only local interactions
(e.g. couplings with only a limited number of neighbours).
Such sparse Hamiltonians have O(N) non-zero elements in the component basis.

“Local basis structure” can appear in different forms.
e.g. factorisable dense operator in FFT, multipole expansions for smooth long range interactions.

(3) The Hamiltonian is specified using a finite number of functions,
with Hij calculable from i , j (e.g. translationally invariant interactions).
Resources needed to just write down H should not influence the simulation complexity.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 7

/ 32

Useful Physical Features

Features commonly present in physical problems are:

(1) The Hilbert space is a tensor product of many small components
(e.g. N = 2n for a system of qubits).

(2) The components have only local interactions
(e.g. couplings with only a limited number of neighbours).
Such sparse Hamiltonians have O(N) non-zero elements in the component basis.

“Local basis structure” can appear in different forms.
e.g. factorisable dense operator in FFT, multipole expansions for smooth long range interactions.

(3) The Hamiltonian is specified using a finite number of functions,
with Hij calculable from i , j (e.g. translationally invariant interactions).
Resources needed to just write down H should not influence the simulation complexity.

Such Hamiltonians can be mapped to graphs with bounded degree d
(vertices ↔ components, edges ↔ interactions).
Above features permit SIMD simulations of these Hamiltonians with domain decomposition.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 7

/ 32

Useful Physical Features

Features commonly present in physical problems are:

(1) The Hilbert space is a tensor product of many small components
(e.g. N = 2n for a system of qubits).

(2) The components have only local interactions
(e.g. couplings with only a limited number of neighbours).
Such sparse Hamiltonians have O(N) non-zero elements in the component basis.

“Local basis structure” can appear in different forms.
e.g. factorisable dense operator in FFT, multipole expansions for smooth long range interactions.

(3) The Hamiltonian is specified using a finite number of functions,
with Hij calculable from i , j (e.g. translationally invariant interactions).
Resources needed to just write down H should not influence the simulation complexity.

Such Hamiltonians can be mapped to graphs with bounded degree d
(vertices ↔ components, edges ↔ interactions).
Above features permit SIMD simulations of these Hamiltonians with domain decomposition.

Efficient Hamiltonian simulation algorithms use resources that are
polynomial in log(N), d , T and log(ǫ). [Class P:P]

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 7

/ 32

Lower Bounds on Complexity

Space: d logN (volume of system)
Time: T (duration of evolution)
Approximation errors: Should remain bounded
(i.e. independent of space and time) for best efficiency.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 8

/ 32

Lower Bounds on Complexity

Space: d logN (volume of system)
Time: T (duration of evolution)
Approximation errors: Should remain bounded
(i.e. independent of space and time) for best efficiency.

Control of Errors

In a digitised simulation, discretisation errors automatically appear.
There are many techniques to keep them under control,
which can be combined to achieve the best results:

(1) Equivalent evolutions with different step sizes.
Use effective theory with a large cutoff.

(2) Higher order expansions by superposing contributions.
kth order expansion can give ǫ ∼ 1/k! and k ∼ log(1/ǫ)/ log log(1/ǫ).
Control with superposed ancilla states can combine a large number of contributions.

(3) Selection of the answer using error correction codes.
Suppress the remnant error by powers, e.g. multiple runs and majority rule.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 8

/ 32

Evolution Strategy

Efficient simulation strategy has two major ingredients:

(A) Decompose the sparse Hamiltonian as a sum of non-commuting but
block-diagonal parts, H =

∑l
i=1 Hi .

Blocks can be reduced in size to a mixture of 1× 1 and 2× 2 blocks.

Then each Hi can be easily and exactly exponentiated,
with exp(−iHiτ) retaining the block-diagonal structure.

1× 1 blocks exponentiate to phases. 2× 2 blocks, H(b) = a0I +~a · ~σ,
have projection operator structure and can be interpreted as binary query oracles.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 9

/ 32

Evolution Strategy

Efficient simulation strategy has two major ingredients:

(A) Decompose the sparse Hamiltonian as a sum of non-commuting but
block-diagonal parts, H =

∑l
i=1 Hi .

Blocks can be reduced in size to a mixture of 1× 1 and 2× 2 blocks.

Then each Hi can be easily and exactly exponentiated,
with exp(−iHiτ) retaining the block-diagonal structure.

1× 1 blocks exponentiate to phases. 2× 2 blocks, H(b) = a0I +~a · ~σ,
have projection operator structure and can be interpreted as binary query oracles.

Hi can be identified by an edge-colouring algorithm for graphs, with
distinct colours for overlapping edges.
Vizing: Any graph can be efficiently coloured with d + 1 colours.

Algorithms for bipartite graphs are simpler than the generic case. They need d colours.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 9

/ 32

Evolution Strategy

Efficient simulation strategy has two major ingredients:

(A) Decompose the sparse Hamiltonian as a sum of non-commuting but
block-diagonal parts, H =

∑l
i=1 Hi .

Blocks can be reduced in size to a mixture of 1× 1 and 2× 2 blocks.

Then each Hi can be easily and exactly exponentiated,
with exp(−iHiτ) retaining the block-diagonal structure.

1× 1 blocks exponentiate to phases. 2× 2 blocks, H(b) = a0I +~a · ~σ,
have projection operator structure and can be interpreted as binary query oracles.

Hi can be identified by an edge-colouring algorithm for graphs, with
distinct colours for overlapping edges.
Vizing: Any graph can be efficiently coloured with d + 1 colours.

Algorithms for bipartite graphs are simpler than the generic case. They need d colours.

Identification of Hi provides a compressed labeling scheme to address
individual blocks. The independent blocks can then be easily evolved in
parallel (classically), or in superposition (quantum mechanically).
This strategy keeps the spatial scaling of the algorithm under control.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 9

/ 32

Example of Hamiltonian decomposition:

Discretised Laplacian in 1-dim can be decomposed as:

· ·

· · · −1 2 −1 0 0 · · ·

· · · 0 −1 2 −1 0 · · ·

· · · 0 0 −1 2 −1 · · ·

· ·

=

· ·

· · · −1 1 0 0 0 · · ·

· · · 0 0 1 −1 0 · · ·

· · · 0 0 −1 1 0 · · ·

· ·

+

· ·

· · · 0 1 −1 0 0 · · ·

· · · 0 −1 1 0 0 · · ·

· · · 0 0 0 1 −1 · · ·

· ·

This decomposition has the projection operator structure following from:
H = Ho + He , H

2
o = 2Ho , H

2
e = 2He .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 10

/ 32

Example of Hamiltonian decomposition:

Discretised Laplacian in 1-dim can be decomposed as:

· ·

· · · −1 2 −1 0 0 · · ·

· · · 0 −1 2 −1 0 · · ·

· · · 0 0 −1 2 −1 · · ·

· ·

=

· ·

· · · −1 1 0 0 0 · · ·

· · · 0 0 1 −1 0 · · ·

· · · 0 0 −1 1 0 · · ·

· ·

+

· ·

· · · 0 1 −1 0 0 · · ·

· · · 0 −1 1 0 0 · · ·

· · · 0 0 0 1 −1 · · ·

· ·

This decomposition has the projection operator structure following from:
H = Ho + He , H

2
o = 2Ho , H

2
e = 2He .

Graphically, the bipartite break-up is:

o o o
s s s s s s

e e.

Ho and He are identified by the last bit of the position label.
Eigenvalues of H are 4 sin2(k/2). Those of Ho ,He are 0, 2.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 10

/ 32

Evolution Strategy (contd.)

(B) Use the discrete Lie-Trotter formula to exponentiate H, but with as
large ∆t as possible.

e−iHT = e−i
∑l

i=1 HiT ≈ (
∏

i e
−iHi∆t)n, n = T/∆t

This replacement maintains unitarity of the evolution,
but may not preserve other properties such as the energy.
Time-dependent Hamiltonians should be expanded about the mid-point of the interval ∆t.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 11

/ 32

Evolution Strategy (contd.)

(B) Use the discrete Lie-Trotter formula to exponentiate H, but with as
large ∆t as possible.

e−iHT = e−i
∑l

i=1 HiT ≈ (
∏

i e
−iHi∆t)n, n = T/∆t

This replacement maintains unitarity of the evolution,
but may not preserve other properties such as the energy.
Time-dependent Hamiltonians should be expanded about the mid-point of the interval ∆t.

For block-diagonal Hi , exact exponentiation with large ∆t keeps the
temporal scaling of the algorithm under control.

When the exponent is proportional to a projection operator, the largest ∆t
makes the exponential a reflection operator.
P = 1

2(1− n̂ · ~σ), P2 = P ⇒ R = e±iπP = 1− 2P = n̂ · ~σ, R2 = I

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 11

/ 32

Evolution Strategy (contd.)

(B) Use the discrete Lie-Trotter formula to exponentiate H, but with as
large ∆t as possible.

e−iHT = e−i
∑l

i=1 HiT ≈ (
∏

i e
−iHi∆t)n, n = T/∆t

This replacement maintains unitarity of the evolution,
but may not preserve other properties such as the energy.
Time-dependent Hamiltonians should be expanded about the mid-point of the interval ∆t.

For block-diagonal Hi , exact exponentiation with large ∆t keeps the
temporal scaling of the algorithm under control.

When the exponent is proportional to a projection operator, the largest ∆t
makes the exponential a reflection operator.
P = 1

2(1− n̂ · ~σ), P2 = P ⇒ R = e±iπP = 1− 2P = n̂ · ~σ, R2 = I

The choice of large ∆t also improves the error complexity from a power
law dependence on ǫ to a logarithmic one.

That is not at all obvious, and needs to be demonstrated.
A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution

23 June 2016, IQC, Waterloo, Canada 11
/ 32

Summary of Results

Our simulation strategy yields the computational complexity

O
(
t log(t/ǫ)
log(log(t/ǫ))C

)

where C is the simulation cost of a single time step (essentially the
matrix-vector product H|x〉), which only weakly depends on t and ǫ.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 12

/ 32

Summary of Results

Our simulation strategy yields the computational complexity

O
(
t log(t/ǫ)
log(log(t/ǫ))C

)

where C is the simulation cost of a single time step (essentially the
matrix-vector product H|x〉), which only weakly depends on t and ǫ.

C characterises how computational complexity of classical implementation
is improved in the quantum case, through conversion of independent
parallel execution threads into quantum superposition.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 12

/ 32

Summary of Results

Our simulation strategy yields the computational complexity

O
(
t log(t/ǫ)
log(log(t/ǫ))C

)

where C is the simulation cost of a single time step (essentially the
matrix-vector product H|x〉), which only weakly depends on t and ǫ.

C characterises how computational complexity of classical implementation
is improved in the quantum case, through conversion of independent
parallel execution threads into quantum superposition.

For digital calculations with b-bit precision, discretisation errors are kept
under control, with b = Ω(log(t/ǫ) log(t/ǫ))).

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 12

/ 32

Summary of Results

Our simulation strategy yields the computational complexity

O
(
t log(t/ǫ)
log(log(t/ǫ))C

)

where C is the simulation cost of a single time step (essentially the
matrix-vector product H|x〉), which only weakly depends on t and ǫ.

C characterises how computational complexity of classical implementation
is improved in the quantum case, through conversion of independent
parallel execution threads into quantum superposition.

For digital calculations with b-bit precision, discretisation errors are kept
under control, with b = Ω(log(t/ǫ) log(t/ǫ))).

For l-sparse Hamiltonians, the cost C is O(lNb3) classically and
O(lnb3) quantum mechanically.
Elements of H must be efficiently calculable functions of known parameters and the indices.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 12

/ 32

Illustration: Database Search

View database search as a Hamiltonian evolution problem.

The evolution is from the initial uniform superposition state |s〉 to
a specific target state |t〉: U(T)|s〉 = |t〉.
For a database of size N: |〈i |s〉| = 1/

√
N, 〈i |t〉 = δit .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 13

/ 32

Illustration: Database Search

View database search as a Hamiltonian evolution problem.

The evolution is from the initial uniform superposition state |s〉 to
a specific target state |t〉: U(T)|s〉 = |t〉.
For a database of size N: |〈i |s〉| = 1/

√
N, 〈i |t〉 = δit .

Logic: Design a Hamiltonian to diffuse the wavefunction over the whole
Hilbert space by kinetic energy (mean field version) and attract it towards
the target by potential energy.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 13

/ 32

Illustration: Database Search

View database search as a Hamiltonian evolution problem.

The evolution is from the initial uniform superposition state |s〉 to
a specific target state |t〉: U(T)|s〉 = |t〉.
For a database of size N: |〈i |s〉| = 1/

√
N, 〈i |t〉 = δit .

Logic: Design a Hamiltonian to diffuse the wavefunction over the whole
Hilbert space by kinetic energy (mean field version) and attract it towards
the target by potential energy.

In simplest algorithms, the Hamiltonians depend only on |s〉 and |t〉.
The unitary evolution is then a rotation in the 2-dim subspace formed
by |s〉 and |t〉. Let

|t〉 =
(
1
0

)
, |t⊥〉 =

(
0
1

)
, |s〉 =

(
1/
√
N√

(N − 1)/N

)
.

A time-independent H rotates the state at a fixed rate:

|ψ〉 → U(t)|ψ〉, U(t) = exp(−iHt) = exp(−i n̂H · ~σωt).
A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution

23 June 2016, IQC, Waterloo, Canada 13
/ 32

Farhi-Gutmann version

Continuous time evolution with HC = |s〉〈s|+ |t〉〈t| gives:
U(t) = exp(−i n̂ · ~σt/

√
N), n̂ = (

√
(N − 1)/N, 0, 1/

√
N)T .

The (unnormalised) eigenvectors of H are |s〉 ± |t〉.
The rotation axis n̂ bisects the initial and target states.

Rotation by angle π on the Bloch sphere takes |s〉 to |t〉,
with evolution time T = (π/2)

√
N.

Grover version

Time evolution is discrete with the evolution operator

UG = −(I − 2|s〉〈s|)(I − 2|t〉〈t|) = (1− 2
N
)I + 2i

√
N−1
N

σ2 .

It is the discrete Lie-Trotter formula for Hs and Ht with ∆tG = π.
The rotation axis n̂G = (0, 1, 0)T is orthogonal to n̂.

UG = exp(−iHG τ) corresponds to the Hamiltonian

HG = i [|t〉〈t|, |s〉〈s|] = i(|t〉〈s| − |s〉〈t|)/
√
N = −

√
N−1
N

σ2 .
Non-trivial fact: HG is the commutator of the two projection operators in HC .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 14

/ 32

The evolution time step is: τ = 2N√
N−1

sin−1 1√
N
.

Going from |s〉 to |t〉 requires Q steps along the geodesic:
(UG)

Q |s〉 = |t〉, QT = 1
4 cos

−1(2
N
− 1)/ sin−1(1/

√
N) ≈ π

4

√
N.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 15

/ 32

The evolution time step is: τ = 2N√
N−1

sin−1 1√
N
.

Going from |s〉 to |t〉 requires Q steps along the geodesic:
(UG)

Q |s〉 = |t〉, QT = 1
4 cos

−1(2
N
− 1)/ sin−1(1/

√
N) ≈ π

4

√
N.

y

z

x

|s〉

|t〉

|t⊥〉

n̂Gn̂

HG HC

The two evolution trajectories are completely different (n̂ and n̂G are
orthogonal). Only after a specific evolution time, corresponding to the
solution of the search problem, they meet each other.

Adiabatic evolution follows the same trajectory as HG .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 15

/ 32

Equivalent Evolutions

For database search: UC (T) = i(1− 2|t〉〈t|)(UG)
QT

For a more general evolution time 0 < t < T , we have
(analogous to the Euler angle decomposition):

UC (t) = exp(iβσ3) (UG)
Qt exp

(
i(π2 + β)σ3

)
,

Qt =
sin−1

(√
N−1
N

sin(t/
√
N)
)

2 sin−1(1/
√
N)

≈ t
2 , σ3 = 2|t〉〈t| − 1,

β = −π
4 − 1

2 tan
−1

(
1√
N
tan(t/

√
N)

)
.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 16

/ 32

Equivalent Evolutions

For database search: UC (T) = i(1− 2|t〉〈t|)(UG)
QT

For a more general evolution time 0 < t < T , we have
(analogous to the Euler angle decomposition):

UC (t) = exp(iβσ3) (UG)
Qt exp

(
i(π2 + β)σ3

)
,

Qt =
sin−1

(√
N−1
N

sin(t/
√
N)
)

2 sin−1(1/
√
N)

≈ t
2 , σ3 = 2|t〉〈t| − 1,

β = −π
4 − 1

2 tan
−1

(
1√
N
tan(t/

√
N)

)
.

Thus UC (t) can be expressed entirely in terms of projection operators,
and the two evolutions are identical irrespective of the initial state and the
evolution time.

HG can be used to obtain the same evolution as HC , even though they
have completely different eigenvectors and eigenvalues.

Fractional oracle operator, Oφ = exp(iφ|t〉〈t|), is easily generated using an ancilla bit.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 16

/ 32

Complexity of Discretised Evolution

All continuous variables are discretised in digital computers.
That is needed for implementing fault-tolerant computation with control over bounded errors.

Discrete evolution step ∆t has to be chosen so as to satisfy the overall
error bound ǫ on the algorithm.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 17

/ 32

Complexity of Discretised Evolution

All continuous variables are discretised in digital computers.
That is needed for implementing fault-tolerant computation with control over bounded errors.

Discrete evolution step ∆t has to be chosen so as to satisfy the overall
error bound ǫ on the algorithm.

The simplest and the symmetric Lie-Trotter formulae are:

e−i
∑l

i=1 Hi∆t = (e−iH1∆t ...e−iHl∆t)× e−iE (2)(∆t)2

e−i
∑l

i=1 Hi∆t = (e−iHl∆t/2...e−iH1∆t/2)

× (e−iH1∆t/2...e−iHl∆t/2)× e−iE (3)(∆t)3

with discretisation errors:

E (2) =
i

24

∑

i<j

[Hi ,Hj] + O(∆t)

E (3) =
1

24

∑

i<j

{2[Hi , [Hi ,Hj]] + [Hj , [Hi ,Hj]]}

+
1

12

∑

i<j<k

{2[Hi , [Hj ,Hk]] + [Hj , [Hi ,Hk]]}+ O(∆t)

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 17

/ 32

Small step size ∆t:

For unitary operators, ||X || = 1. For n evolution steps, triangle and
Cauchy-Schwarz inequalities bound the error:
||Xm − Ym|| = ||(X − Y)(Xm−1 + . . .+ Ym−1)|| ≤ m||X − Y ||.
So to keep the total discretisation error bounded, we need
m||e−iE (k)(∆t)k − I || ≈ m(∆t)k ||E (k)|| = m1−ktk ||E (k)|| < ǫ1.
R repetitions, and majority rule selection (not average)

of the result, further reduce the error to 2R−1ǫ
⌈R/2⌉
1 < ǫ.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 18

/ 32

Small step size ∆t:

For unitary operators, ||X || = 1. For n evolution steps, triangle and
Cauchy-Schwarz inequalities bound the error:
||Xm − Ym|| = ||(X − Y)(Xm−1 + . . .+ Ym−1)|| ≤ m||X − Y ||.
So to keep the total discretisation error bounded, we need
m||e−iE (k)(∆t)k − I || ≈ m(∆t)k ||E (k)|| = m1−ktk ||E (k)|| < ǫ1.
R repetitions, and majority rule selection (not average)

of the result, further reduce the error to 2R−1ǫ
⌈R/2⌉
1 < ǫ.

With exact exponentiation of the individual Hi ,
the computational cost C of a single step is independent of ∆t.

The computational complexity of the whole evolution is then
O(mRC) = O(tk/(k−1)(||E (k)||/ǫ1/⌈R/2⌉)1/(k−1)RC).

With power-law scaling in ǫ, this scheme is inefficient.
For the Hamiltonian HC , ||E (2)|| and ||E (3)|| are O(N−1/2).
For evolution time T = Θ(N1/2), its time complexity is linear.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 18

/ 32

Grover’s discretisation:

∆tG is chosen to make exp(−Hi∆tG) reflection operators.

The large step size introduces an error because one may jump across
the desired state instead of reaching it exactly.
In general, Qt is not an integer, and has to be replaced by its nearest
integer approximation ⌊Qt +

1
2⌋.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 19

/ 32

Grover’s discretisation:

∆tG is chosen to make exp(−Hi∆tG) reflection operators.

The large step size introduces an error because one may jump across
the desired state instead of reaching it exactly.
In general, Qt is not an integer, and has to be replaced by its nearest
integer approximation ⌊Qt +

1
2⌋.

The error probability for UC (t) is thus bounded by 1/N,
corresponding to half a rotation step. With R repetitions and majority
rule selection of the result, the error probability becomes less than
2R−1/N⌈R/2⌉, which can be made less than any specified ǫ.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 19

/ 32

Grover’s discretisation:

∆tG is chosen to make exp(−Hi∆tG) reflection operators.

The large step size introduces an error because one may jump across
the desired state instead of reaching it exactly.
In general, Qt is not an integer, and has to be replaced by its nearest
integer approximation ⌊Qt +

1
2⌋.

The error probability for UC (t) is thus bounded by 1/N,
corresponding to half a rotation step. With R repetitions and majority
rule selection of the result, the error probability becomes less than
2R−1/N⌈R/2⌉, which can be made less than any specified ǫ.

The computational complexity of the total evolution is then

O(QtRCG) = O(t2(−
2 log ǫ
logN)CG) = O(t log(1/ǫ)logN CG),

and the algorithm is efficient.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 19

/ 32

Key Observations

With a straightforward application of the Lie-Trotter formula, the
algorithm has an error proportional to the number of steps m, and a
power-law dependence of complexity on ǫ.

With the Lie-Trotter formula based on exact exponentiation of projection
operators to reflection operators, the algorithm has an error independent
of the evolution time, and a logarithmic dependence of complexity on ǫ.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 20

/ 32

Key Observations

With a straightforward application of the Lie-Trotter formula, the
algorithm has an error proportional to the number of steps m, and a
power-law dependence of complexity on ǫ.

With the Lie-Trotter formula based on exact exponentiation of projection
operators to reflection operators, the algorithm has an error independent
of the evolution time, and a logarithmic dependence of complexity on ǫ.

Algebraically, the Baker-Campbell-Hausdorff expansion simplifies for
projection operators. That allows efficient implementation of the
Lie-Trotter formula even for large ∆t.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 20

/ 32

Key Observations

With a straightforward application of the Lie-Trotter formula, the
algorithm has an error proportional to the number of steps m, and a
power-law dependence of complexity on ǫ.

With the Lie-Trotter formula based on exact exponentiation of projection
operators to reflection operators, the algorithm has an error independent
of the evolution time, and a logarithmic dependence of complexity on ǫ.

Algebraically, the Baker-Campbell-Hausdorff expansion simplifies for
projection operators. That allows efficient implementation of the
Lie-Trotter formula even for large ∆t.

With compressed labeling, operations on specific blocks are easily
implemented as controlled unitary operations.

Euler angle decomposition allows easy conversion of rotations about
arbitrary axes to rotations about fixed axes.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 20

/ 32

Digital Quantum State Implementation

A quantum state in an N-dimensional Hilbert space is:
|x〉 = ∑N−1

j=0 xj |j〉,
∑N−1

j=0 |xj |2 = 1.
This standard analog representation is not suitable for high precision
calculations. So we use the digital representation instead,
specified by the map:

|x〉 −→ 1√
N

∑N−1
j=0 |j〉|xj〉b .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 21

/ 32

Digital Quantum State Implementation

A quantum state in an N-dimensional Hilbert space is:
|x〉 = ∑N−1

j=0 xj |j〉,
∑N−1

j=0 |xj |2 = 1.
This standard analog representation is not suitable for high precision
calculations. So we use the digital representation instead,
specified by the map:

|x〉 −→ 1√
N

∑N−1
j=0 |j〉|xj〉b .

This is a quantum state in a (2bN)-dimensional Hilbert space, where |xj〉b
are basis vectors of a b-bit register representing the truncated value of xj .
It is fully entangled between the index state |j〉 and the register value state
|xj〉b, with a unique |xj〉b (out of 2b possibilities) for every |j〉.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 21

/ 32

Digital Quantum State Implementation

A quantum state in an N-dimensional Hilbert space is:
|x〉 = ∑N−1

j=0 xj |j〉,
∑N−1

j=0 |xj |2 = 1.
This standard analog representation is not suitable for high precision
calculations. So we use the digital representation instead,
specified by the map:

|x〉 −→ 1√
N

∑N−1
j=0 |j〉|xj〉b .

This is a quantum state in a (2bN)-dimensional Hilbert space, where |xj〉b
are basis vectors of a b-bit register representing the truncated value of xj .
It is fully entangled between the index state |j〉 and the register value state
|xj〉b, with a unique |xj〉b (out of 2b possibilities) for every |j〉.
No unitarity constraint is needed on the register values xj .
A single index j controls the whole entangled state.
Index j can be handled in parallel (classically) or in superposition (quantum mechanically).

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 21

/ 32

Freedom from the unitarity constraint allows simple implmentation of
linear algebra operations, using only C-not and Toffoli gates of classical
reversible logic, with the index j acting as control:

c |x〉 −→ 1√
N

∑N−1
j=0 |j〉|cxj〉b ,

|x〉+ |y〉 −→ 1√
N

∑N−1
j=0 |j〉|xj + yj〉b .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 22

/ 32

Freedom from the unitarity constraint allows simple implmentation of
linear algebra operations, using only C-not and Toffoli gates of classical
reversible logic, with the index j acting as control:

c |x〉 −→ 1√
N

∑N−1
j=0 |j〉|cxj〉b ,

|x〉+ |y〉 −→ 1√
N

∑N−1
j=0 |j〉|xj + yj〉b .

This freedom is useful because quantum states are never physically
observed. Only expectation values of operators are observed.
So the digital representation is completed with the operator map:

Oa → Oa ⊗ Ob such that b〈xj |Ob|xl〉b = Nx∗j xl .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 22

/ 32

Freedom from the unitarity constraint allows simple implmentation of
linear algebra operations, using only C-not and Toffoli gates of classical
reversible logic, with the index j acting as control:

c |x〉 −→ 1√
N

∑N−1
j=0 |j〉|cxj〉b ,

|x〉+ |y〉 −→ 1√
N

∑N−1
j=0 |j〉|xj + yj〉b .

This freedom is useful because quantum states are never physically
observed. Only expectation values of operators are observed.
So the digital representation is completed with the operator map:

Oa → Oa ⊗ Ob such that b〈xj |Ob|xl〉b = Nx∗j xl .

The solution, in a bit-wise fully factorised form, is
Ob = NV †(1 + σ1)

⊗bV , (1 + σ1)
⊗b = 2b|s〉b b〈s|,

with the place-value operator, V |xj〉 = xj |xj〉, given by

V =
∑b−1

k=0 2
−k I⊗k ⊗

(
1−σ3
2

)
⊗ I⊗(b−k−1).

Computational complexity of expectation value calculations in the digital
representation is O(b2) times that in the analog case.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 22

/ 32

Salient features:

• The same vector space coordinates xj are used with two different
metrics. Linear algebra is carried out with the Cartesian metric,
while expectation values are evaluated with the metric Ob.
The computation is deterministic throughout.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 23

/ 32

Salient features:

• The same vector space coordinates xj are used with two different
metrics. Linear algebra is carried out with the Cartesian metric,
while expectation values are evaluated with the metric Ob.
The computation is deterministic throughout.

• Non-unitary operations are mapped to unitary ones. Absence of unitarity
constraint bypasses complicated amplitude amplification requirements.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 23

/ 32

Salient features:

• The same vector space coordinates xj are used with two different
metrics. Linear algebra is carried out with the Cartesian metric,
while expectation values are evaluated with the metric Ob.
The computation is deterministic throughout.

• Non-unitary operations are mapped to unitary ones. Absence of unitarity
constraint bypasses complicated amplitude amplification requirements.

• The initial state can be created as

|0〉|0〉b H⊗n⊗I−→ 1√
N

∑N−1
j=0 |j〉|0〉b Cx−→ 1√

N

∑N−1
j=0 |j〉|xj(0)〉b .

The final state observables are assumed to be efficiently computable from xj (T).

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 23

/ 32

Salient features:

• The same vector space coordinates xj are used with two different
metrics. Linear algebra is carried out with the Cartesian metric,
while expectation values are evaluated with the metric Ob.
The computation is deterministic throughout.

• Non-unitary operations are mapped to unitary ones. Absence of unitarity
constraint bypasses complicated amplitude amplification requirements.

• The initial state can be created as

|0〉|0〉b H⊗n⊗I−→ 1√
N

∑N−1
j=0 |j〉|0〉b Cx−→ 1√

N

∑N−1
j=0 |j〉|xj(0)〉b .

The final state observables are assumed to be efficiently computable from xj (T).

• A measurement eigenstate can be identified by successive binary search.
Binary Stern-Gerlach measurement can be performed as (δjk = j − k + 1):

1√
2

∑1
j=0 |j〉|δjk〉1

(Cnot)21−→ |1− k〉 1√
2

∑1
j=0 |j〉1

(Measure)1−→ k .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 23

/ 32

Salient features:

• The same vector space coordinates xj are used with two different
metrics. Linear algebra is carried out with the Cartesian metric,
while expectation values are evaluated with the metric Ob.
The computation is deterministic throughout.

• Non-unitary operations are mapped to unitary ones. Absence of unitarity
constraint bypasses complicated amplitude amplification requirements.

• The initial state can be created as

|0〉|0〉b H⊗n⊗I−→ 1√
N

∑N−1
j=0 |j〉|0〉b Cx−→ 1√

N

∑N−1
j=0 |j〉|xj(0)〉b .

The final state observables are assumed to be efficiently computable from xj (T).

• A measurement eigenstate can be identified by successive binary search.
Binary Stern-Gerlach measurement can be performed as (δjk = j − k + 1):

1√
2

∑1
j=0 |j〉|δjk〉1

(Cnot)21−→ |1− k〉 1√
2

∑1
j=0 |j〉1

(Measure)1−→ k .

• Linear operations on density matrices can also be carried out in a similar
fashion, using the identity: 2b〈s|V |ρij〉2b = ρij .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 23

/ 32

Truncation Error

A digital computer with finite number of bits produces truncation errors.
With b bits, the precision is δ = 2−b.

Addition, multiplication and polynomial evaluations respectively require
O(b), O(b2) and O(b3) resources.

Overflow/underflow limits the degree of the polynomial to be at most b.

With all functions approximated by accurate polynomials,
and fixed axes rotations, b-bit precision needs O(b3) effort.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 24

/ 32

Truncation Error

A digital computer with finite number of bits produces truncation errors.
With b bits, the precision is δ = 2−b.

Addition, multiplication and polynomial evaluations respectively require
O(b), O(b2) and O(b3) resources.

Overflow/underflow limits the degree of the polynomial to be at most b.

With all functions approximated by accurate polynomials,
and fixed axes rotations, b-bit precision needs O(b3) effort.

Number of blocks is O(N). Number of exponentiations of Hi ,
Nexp, needed for the Lie-Trotter formula is m(k − 1)l ,
which reduces to 2Qt ≈ t for the Grover version.

The truncation error can be always made negligible compared to the
discretisation error, with the choice Nexpδ = O(ǫ),
i.e. b = Θ(log(m/ǫ)) or Θ(log(t/ǫ)).

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 24

/ 32

Truncation Error

A digital computer with finite number of bits produces truncation errors.
With b bits, the precision is δ = 2−b.

Addition, multiplication and polynomial evaluations respectively require
O(b), O(b2) and O(b3) resources.

Overflow/underflow limits the degree of the polynomial to be at most b.

With all functions approximated by accurate polynomials,
and fixed axes rotations, b-bit precision needs O(b3) effort.

Number of blocks is O(N). Number of exponentiations of Hi ,
Nexp, needed for the Lie-Trotter formula is m(k − 1)l ,
which reduces to 2Qt ≈ t for the Grover version.

The truncation error can be always made negligible compared to the
discretisation error, with the choice Nexpδ = O(ǫ),
i.e. b = Θ(log(m/ǫ)) or Θ(log(t/ǫ)).

The cost of a single step then scales as C = O(logN(log(t/ǫ))3),
and the algorithm is efficient.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 24

/ 32

Extensions

For more general Hamiltonians, the evolution strategy can be chosen as a
rapidly converging series expansion. Reflection operators have the largest
spectral gap among unitary operators, and lead to fast convergence.

Tal-Ezer and Kosloff (1984), Berry et al. (2015)

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 25

/ 32

Extensions

For more general Hamiltonians, the evolution strategy can be chosen as a
rapidly converging series expansion. Reflection operators have the largest
spectral gap among unitary operators, and lead to fast convergence.

Tal-Ezer and Kosloff (1984), Berry et al. (2015)

Two Projection Operators:

Let H = H1 + H2, H
2
i = Hi , Ri = I − 2Hi , r0(0) = 1, rk(0) = 0. Then

e it exp(−iHt) = exp
(
i(R1 + R2)

t

2

)

= r0(t) I +
∞∑

k=1

rk(t) [(R1R2R1 . . .)k + (R2R1R2 . . .)k] .

Truncated series can be efficiently evaluated as nested products.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 25

/ 32

Extensions

For more general Hamiltonians, the evolution strategy can be chosen as a
rapidly converging series expansion. Reflection operators have the largest
spectral gap among unitary operators, and lead to fast convergence.

Tal-Ezer and Kosloff (1984), Berry et al. (2015)

Two Projection Operators:

Let H = H1 + H2, H
2
i = Hi , Ri = I − 2Hi , r0(0) = 1, rk(0) = 0. Then

e it exp(−iHt) = exp
(
i(R1 + R2)

t

2

)

= r0(t) I +
∞∑

k=1

rk(t) [(R1R2R1 . . .)k + (R2R1R2 . . .)k] .

Truncated series can be efficiently evaluated as nested products.

Differentiation of this expansion provides recurrence relations for the
coefficients (k ≥ 1):

dr0(t)
dt

= ir1(t) ,
drk (t)
dt

= i
2 (rk+1(t) + rk−1(t)) .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 25

/ 32

The solutions are the Bessel functions:
r0(t) = J0(t) , rk(t) = ikJk(t) , |rk(t)| = O(tk/(2kk!)) .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 26

/ 32

The solutions are the Bessel functions:
r0(t) = J0(t) , rk(t) = ikJk(t) , |rk(t)| = O(tk/(2kk!)) .

Summation of the series to order p requires 2p executions of the linear
algebra operation (rI + R)|x〉.
Multiplication of |x〉 by block-diagonal Ri can be performed by shuffling
elements of |x〉 within each block.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 26

/ 32

The solutions are the Bessel functions:
r0(t) = J0(t) , rk(t) = ikJk(t) , |rk(t)| = O(tk/(2kk!)) .

Summation of the series to order p requires 2p executions of the linear
algebra operation (rI + R)|x〉.
Multiplication of |x〉 by block-diagonal Ri can be performed by shuffling
elements of |x〉 within each block.

With t = m∆t and ||Ri || = 1, the truncation error is:

2m (∆t)p+1

2p+1(p+1)!

(
1− ∆t

2(p+2)

)−1
< ǫ .

When ∆t = Θ(1), formally p = O(log(t/ǫ)/ log(log(t/ǫ))).
Numerical tests indicate that ∆t = π is a good choice.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 26

/ 32

The solutions are the Bessel functions:
r0(t) = J0(t) , rk(t) = ikJk(t) , |rk(t)| = O(tk/(2kk!)) .

Summation of the series to order p requires 2p executions of the linear
algebra operation (rI + R)|x〉.
Multiplication of |x〉 by block-diagonal Ri can be performed by shuffling
elements of |x〉 within each block.

With t = m∆t and ||Ri || = 1, the truncation error is:

2m (∆t)p+1

2p+1(p+1)!

(
1− ∆t

2(p+2)

)−1
< ǫ .

When ∆t = Θ(1), formally p = O(log(t/ǫ)/ log(log(t/ǫ))).
Numerical tests indicate that ∆t = π is a good choice.

The computational complexity is then, with C = O(nb3),

O(2mpC) = O
(
t log(t/ǫ)
log(log(t/ǫ))C

)
.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 26

/ 32

Local Bounded Hamiltonians:

Chebyshev expansion provides a uniform approximation to any bounded
function. Scale the Hamiltonian such that its spectrum is within the
domain [−1, 1] of the Chebyshev polynomials Tn(x) = cos(n cos−1 x).

e−iHt =
∑∞

k=0 Ck(t) Tk(H) has the expansion coefficients:

C0 =
1
π

∫ π
0 e−it cos θdθ = J0(t) ,

Ck>0 =
2
π

∫ π
0 e−it cos θ cos(kθ) dθ = 2(−i)kJk(t) .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 27

/ 32

Local Bounded Hamiltonians:

Chebyshev expansion provides a uniform approximation to any bounded
function. Scale the Hamiltonian such that its spectrum is within the
domain [−1, 1] of the Chebyshev polynomials Tn(x) = cos(n cos−1 x).

e−iHt =
∑∞

k=0 Ck(t) Tk(H) has the expansion coefficients:

C0 =
1
π

∫ π
0 e−it cos θdθ = J0(t) ,

Ck>0 =
2
π

∫ π
0 e−it cos θ cos(kθ) dθ = 2(−i)kJk(t) .

Partially summed reflection operator series is actually the Chebyshev
expansion (matrix functions are defined as their power series expansions):

Tk

(
−R1+R2

2

)
= (−1)k

2 ((R1R2 . . .)k + (R2R1 . . .)k) .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 27

/ 32

Local Bounded Hamiltonians:

Chebyshev expansion provides a uniform approximation to any bounded
function. Scale the Hamiltonian such that its spectrum is within the
domain [−1, 1] of the Chebyshev polynomials Tn(x) = cos(n cos−1 x).

e−iHt =
∑∞

k=0 Ck(t) Tk(H) has the expansion coefficients:

C0 =
1
π

∫ π
0 e−it cos θdθ = J0(t) ,

Ck>0 =
2
π

∫ π
0 e−it cos θ cos(kθ) dθ = 2(−i)kJk(t) .

Partially summed reflection operator series is actually the Chebyshev
expansion (matrix functions are defined as their power series expansions):

Tk

(
−R1+R2

2

)
= (−1)k

2 ((R1R2 . . .)k + (R2R1 . . .)k) .

Clenshaw’s algorithm, based on the recursion relation,
Tk+1(H) = 2H Tk(H)− Tk−1(H).

efficiently sums a truncated Chebyshev expansion for e−iHt |x〉,
with p sparse matrix-vector products. Note that ||Tk(H)|| ≤ 1.

The computational complexity is O(mpCC), with CC = O(nb3).

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 27

/ 32

An Alternate Strategy:

Chebyshev expansion coefficients Jk(t) are bounded for any value of t,
and rapidly fall off for k > t. So e−iHt can be evaluated at one shot,
without subdividing the time interval into multiple steps.

This requires H to be time independent, otherwise evolution has to be
performed piece-wise over time intervals where H is effectively constant.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 28

/ 32

An Alternate Strategy:

Chebyshev expansion coefficients Jk(t) are bounded for any value of t,
and rapidly fall off for k > t. So e−iHt can be evaluated at one shot,
without subdividing the time interval into multiple steps.

This requires H to be time independent, otherwise evolution has to be
performed piece-wise over time intervals where H is effectively constant.

Truncation of the expansion at order p then results in error
∑∞

k=p+1 |Ck(t)| ≤ tp+1

2p(p+1)!

(
1− t

2(p+2)

)−1
< ǫ .

Its control needs p > et/2, and the formal bound is
p = O(tǫ−1/t) = O(t + log(1/ǫ)).

It is assumed that subleading terms in Bessel function expansions are negligible.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 28

/ 32

An Alternate Strategy:

Chebyshev expansion coefficients Jk(t) are bounded for any value of t,
and rapidly fall off for k > t. So e−iHt can be evaluated at one shot,
without subdividing the time interval into multiple steps.

This requires H to be time independent, otherwise evolution has to be
performed piece-wise over time intervals where H is effectively constant.

Truncation of the expansion at order p then results in error
∑∞

k=p+1 |Ck(t)| ≤ tp+1

2p(p+1)!

(
1− t

2(p+2)

)−1
< ǫ .

Its control needs p > et/2, and the formal bound is
p = O(tǫ−1/t) = O(t + log(1/ǫ)).

It is assumed that subleading terms in Bessel function expansions are negligible.

The computational complexity is O(pCC), with CC = O(nb3).

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 28

/ 32

An Alternate Strategy:

Chebyshev expansion coefficients Jk(t) are bounded for any value of t,
and rapidly fall off for k > t. So e−iHt can be evaluated at one shot,
without subdividing the time interval into multiple steps.

This requires H to be time independent, otherwise evolution has to be
performed piece-wise over time intervals where H is effectively constant.

Truncation of the expansion at order p then results in error
∑∞

k=p+1 |Ck(t)| ≤ tp+1

2p(p+1)!

(
1− t

2(p+2)

)−1
< ǫ .

Its control needs p > et/2, and the formal bound is
p = O(tǫ−1/t) = O(t + log(1/ǫ)).

It is assumed that subleading terms in Bessel function expansions are negligible.

The computational complexity is O(pCC), with CC = O(nb3).

The computational effort to evaluate Jk(t) upto order p, with
b = Ω(log(p/ǫ)) bit precision, is Θ(pb2), and so does not alter the
computational complexity. The procedure runs the recursion relation,

Jk−1(t) =
2k
t
Jk(t)− Jk−1(t) ,

in descending order, and normalises using J0(t) + 2
∑∞

k=1 J2k(t) = 1.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 28

/ 32

Digital State Implementation

Efficient multiplication of the sparse Hamiltonian with a vector needs
block decomposition, to convert the computational complexity from
classical O(N) to quantum O(n).

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 29

/ 32

Digital State Implementation

Efficient multiplication of the sparse Hamiltonian with a vector needs
block decomposition, to convert the computational complexity from
classical O(N) to quantum O(n).

Edge-colouring of the Hamiltonian graph with l colours gives l Hamiltonian
parts, each containing O(N/2) mutually independent 2× 2 blocks.

Diagonal elements Hjj can be absorbed into the 2× 2 blocks according to convenience.
A single edge represents the off-diagonal elements Hj,j+µ = H∗

j+µ,j .

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 29

/ 32

Digital State Implementation

Efficient multiplication of the sparse Hamiltonian with a vector needs
block decomposition, to convert the computational complexity from
classical O(N) to quantum O(n).

Edge-colouring of the Hamiltonian graph with l colours gives l Hamiltonian
parts, each containing O(N/2) mutually independent 2× 2 blocks.

Diagonal elements Hjj can be absorbed into the 2× 2 blocks according to convenience.
A single edge represents the off-diagonal elements Hj,j+µ = H∗

j+µ,j .

The 2× 2 block multiplication is straightforward, with off-diagonal
multiplication carried out using the swap operation:

|j〉|yj〉b + |j + µ〉|yj+µ〉b S−→ |j〉|yj+µ〉b + |j + µ〉|yj〉b .
S = σ1 ⊗ I⊗b acts on the subspace {|j〉, |j + µ〉} ⊗ {|yj〉b, |yj+µ〉b}.
The only difference between classical and quantum algorithms is the
exponential advantage of linear superposition of states.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 29

/ 32

Going Beyond

• Evolutions using a large step size can be looked upon as simulation of an
effective Hamiltonian. The effective Hamiltonian can be quite different
from the original Hamiltonian, and yet dramatically improve the accuracy
of the simulation. Finding appropriate equivalent Hamiltonians can be
useful in speeding up a variety of problems, e.g. adiabatic evolutions.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 30

/ 32

Going Beyond

• Evolutions using a large step size can be looked upon as simulation of an
effective Hamiltonian. The effective Hamiltonian can be quite different
from the original Hamiltonian, and yet dramatically improve the accuracy
of the simulation. Finding appropriate equivalent Hamiltonians can be
useful in speeding up a variety of problems, e.g. adiabatic evolutions.

• Our digital representation bypasses the unitary constraint, allowing a
map between non-unitary linear algebra operations and unitary operators.
This framework can help in construction of class P:P quantum algorithms
for many linear algebra problems, e.g. solution of Ax = b.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 30

/ 32

Going Beyond

• Evolutions using a large step size can be looked upon as simulation of an
effective Hamiltonian. The effective Hamiltonian can be quite different
from the original Hamiltonian, and yet dramatically improve the accuracy
of the simulation. Finding appropriate equivalent Hamiltonians can be
useful in speeding up a variety of problems, e.g. adiabatic evolutions.

• Our digital representation bypasses the unitary constraint, allowing a
map between non-unitary linear algebra operations and unitary operators.
This framework can help in construction of class P:P quantum algorithms
for many linear algebra problems, e.g. solution of Ax = b.

• Projection operator identities are implicit but essential in the
simpflication of our algebra. In particular, the reduction

[P , [P , [P ,X]]] = [P ,X] ,
for a projection operator P , can simplify the Baker-Campbell-Hausdorff
expansion in other applications as well.

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 30

/ 32

References

R.P. Feynman, Simulating Physics with Computers,
Int. J. Theor. Phys. 21 (1982) 467-488

S. Lloyd, Universal Quantum Simulators,
Science 273 (1996) 1073-1078

D. Aharonov and A. Ta-Shma,
Adiabatic Quantum State Generation and Statistical Zero Knowledge,
Proc. 35th Annual ACM Symp. on Theory of Computing, ACM (2003) 20-29

D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders,
Efficient Quantum Algorithms for Simulating Sparse Hamiltonians,
Comm. Math. Phys. 270 (2007) 359-371

A.M. Childs and R. Kothari,
Simulating Sparse Hamiltonians with Star Decompositions,
Proc. TQC2010, Lecture Notes in Comp. Sci. 6519 (2011) 94-103

D.W. Berry, A.M. Childs, R. Cleve, R. Kothari and R.D. Somma,
Exponential Improvement in Precision for Simulating Sparse Hamiltonians,
Proc. 46th Annual ACM Symp. on Theory of Computing, ACM (2014) 283-292

A. Patel, Optimisation of Quantum Evolution Algorithms,
Proc. 32nd International Symp. on Lattice Field Theory, PoS(Lattice2014)324

H. De Raedt, Product Formula Algorithms for Solving the Time-Dependent Schrödinger
Equation, Comp. Phys. Rep. 7 (1987) 1-72

J.L. Richardson, Visualizing Quantum Scattering on the CM-2 Supercomputer,
Comp. Phys. Comm. 63 (1991) 84-94

L.K. Grover, From Schrödinger’s Equation to the Quantum Search Algorithm,
Pramana 56 (2001) 333-348

E. Farhi and S. Gutmann, An Analog Analogue of a Digital Quantum Computation,
Phys. Rev. A 57 (1998) 2403-2406

L.K. Grover, A Fast Quantum Mechanical Algorithm for Database Search,
Proc. 28th Annual ACM Symp. on Theory of Computing, ACM (1996) 212-219

M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press (2000)

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 31

/ 32

H. Tal-Ezer and R. Kosloff, An Accurate and Efficient Scheme for Propagating the
Time Dependent Schrödinger Equation, J. Chem. Phys. 81 (1984) 3967-3971

D.W. Berry, A.M. Childs, R. Cleve, R. Kothari and R.D. Somma,
Simulating Hamiltonian Dynamics with a Truncated Taylor Series,
Phys. Rev. Lett. 114 (2015) 090502

G.B. Arfken, H.J. Weber and F.E. Harris,
Mathematical Methods for Physicists: A Comprehensive Guide,
Seventh Edition, Academic Press (2011)

M. Abramowitz and I.A. Stegun (Eds.),
Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables,
Dover Publications (1965)

R. Achilles and A. Bonfiglioli,
The Early Proofs of the Theorem of Campbell, Baker, Hausdorff, and Dynkin,
Arch. Hist. Exact. Sci. 66 (2012) 295-358

A. Patel (CHEP, IISc) Quantum Hamiltonian Evolution
23 June 2016, IQC, Waterloo, Canada 32

/ 32

