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Abstract

Projective measurement is used as a fundamental axiom in quantum mechanics, even though it

is discontinuous and cannot predict which measured operator eigenstate will be observed in

which experimental run. The probabilistic Born rule gives it an ensemble interpretation,

predicting proportions of various outcomes over many experimental runs. Understanding gradual

weak measurements requires replacing this scenario with a dynamical evolution equation for the

collapse of the quantum state in individual experimental runs. We revisit the framework to

model quantum measurement as a continuous nonlinear stochastic process. It combines

attraction towards the measured operator eigenstates with white noise, and for a specific ratio of

the two reproduces the Born rule. This fluctuation-dissipation relation implies that the quantum

state collapse involves the system-apparatus interaction only, and the Born rule is a consequence

of the noise contributed by the apparatus. The ensemble of the quantum trajectories is

predicted by the stochastic process in terms of a single evolution parameter, and matches well

with the weak measurement results for superconducting transmon qubits.
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Axioms of Quantum Dynamics

(1) Unitary evolution (Schrödinger):
i d
dt
|ψ〉 = H|ψ〉 , i d

dt
ρ = [H, ρ] .

Continuous, Reversible, Deterministic.
Pure state evolves to pure state.
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Axioms of Quantum Dynamics

(1) Unitary evolution (Schrödinger):
i d
dt
|ψ〉 = H|ψ〉 , i d

dt
ρ = [H, ρ] .

Continuous, Reversible, Deterministic.
Pure state evolves to pure state.

(2) Projective measurement (von Neumann):

|ψ〉 −→ Pi |ψ〉/|Pi |ψ〉|, Pi = P†
i , PiPj = Piδij ,

∑

i Pi = I .
Discontinuous, Irreversible, Probabilistic choice of “i”.
Pure state evolves to pure state. Consistent on repetition.

{Pi} is fixed by the measurement apparatus eigenstates. But there is
no prediction for which “i” will occur in a particular experimental run.

This is the crux of “the measurement problem”.
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(1) Unitary evolution (Schrödinger):
i d
dt
|ψ〉 = H|ψ〉 , i d

dt
ρ = [H, ρ] .

Continuous, Reversible, Deterministic.
Pure state evolves to pure state.

(2) Projective measurement (von Neumann):

|ψ〉 −→ Pi |ψ〉/|Pi |ψ〉|, Pi = P†
i , PiPj = Piδij ,

∑

i Pi = I .
Discontinuous, Irreversible, Probabilistic choice of “i”.
Pure state evolves to pure state. Consistent on repetition.

{Pi} is fixed by the measurement apparatus eigenstates. But there is
no prediction for which “i” will occur in a particular experimental run.

This is the crux of “the measurement problem”.

Instead, with Born rule and ensemble interpretation,
prob(i) = 〈ψ|Pi |ψ〉 = Tr(Piρ) , ρ −→

∑

i PiρPi .
Pure state evolves to mixed state. Predicted expectation values are
averages over many experimental runs.
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Weak Measurements

Information about the measured observable is extracted from the system
at a slow rate (e.g. by weak coupling). Stretching out the time scale can
allow one to monitor collapse of the system to a measurement eigenstate.

Note: A measurement interaction is the one where the apparatus does not,
for whatever reasons, remain in a superposition of pointer states.
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allow one to monitor collapse of the system to a measurement eigenstate.

Note: A measurement interaction is the one where the apparatus does not,
for whatever reasons, remain in a superposition of pointer states.

New questions:
• Can all measurements be made continuous? What about decays?
• What is the local evolution rule during measurement?
• What is the state if the measurement is left incomplete?
• How should multipartite measurements be described?
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Weak Measurements

Information about the measured observable is extracted from the system
at a slow rate (e.g. by weak coupling). Stretching out the time scale can
allow one to monitor collapse of the system to a measurement eigenstate.

Note: A measurement interaction is the one where the apparatus does not,
for whatever reasons, remain in a superposition of pointer states.

New questions:
• Can all measurements be made continuous? What about decays?
• What is the local evolution rule during measurement?
• What is the state if the measurement is left incomplete?
• How should multipartite measurements be described?

The answers are important for increasing accuracy of quantum control and
feedback. Knowledge of what happens in a particular experimental run
(and not just the ensemble average) can improve efficiency and stability.

The projective measurement axiom needs to be replaced by a different
continuous stochastic dynamics.
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Beyond Quantum Mechanics

Physical:
(1) Hidden variables with novel dynamics may produce quantum mechanics
as an effective theory, e.g. the GRW spontaneous collapse mechanism.
(2) Ignored (but known) interactions can produce effects that modify
quantum dynamics at macroscopic scales, e.g. effects of CMBR or gravity.
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(2) Ignored (but known) interactions can produce effects that modify
quantum dynamics at macroscopic scales, e.g. effects of CMBR or gravity.

Philosophical:
(1) What is real (ontology) may not be the same as what is observable
(epistemology), e.g. the consistent histories formalism.
(2) Human beings have only limited capacity and cannot comprehend
everything in the universe.
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Beyond Quantum Mechanics

Physical:
(1) Hidden variables with novel dynamics may produce quantum mechanics
as an effective theory, e.g. the GRW spontaneous collapse mechanism.
(2) Ignored (but known) interactions can produce effects that modify
quantum dynamics at macroscopic scales, e.g. effects of CMBR or gravity.

Philosophical:
(1) What is real (ontology) may not be the same as what is observable
(epistemology), e.g. the consistent histories formalism.
(2) Human beings have only limited capacity and cannot comprehend
everything in the universe.

Bypass:
Many worlds interpretation—each evolutionary branch is a different world,
and we only observe the measurement outcome corresponding to the world
we live in (anthropic principle).
None of these have progressed to the level where they can be connected
to verifiable experimental consequences.
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Continuous Stochastic Measurement

Unraveling of quantum collapse:
(a) Quantum jump is discontinuous, probabilistic and irreversible.
(b) Quantum trajectories are continuous, stochastic and tractable.
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Continuous Stochastic Measurement

Unraveling of quantum collapse:
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(b) Quantum trajectories are continuous, stochastic and tractable.

An ensemble of quantum trajectories can be constructed by adding
random noise to a deterministic evolution. But properties of quantum
measurements impose strong constraints.
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Continuous Stochastic Measurement

Unraveling of quantum collapse:
(a) Quantum jump is discontinuous, probabilistic and irreversible.
(b) Quantum trajectories are continuous, stochastic and tractable.

An ensemble of quantum trajectories can be constructed by adding
random noise to a deterministic evolution. But properties of quantum
measurements impose strong constraints.

• To ensure repeatability of measurement outcomes, the measurement
eigenstates need to be fixed points of the evolution. Both attraction and
noise have to vanish at the fixed points.
⇒ The evolution dynamics must be nonlinear or non-unitary.
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Continuous Stochastic Measurement

Unraveling of quantum collapse:
(a) Quantum jump is discontinuous, probabilistic and irreversible.
(b) Quantum trajectories are continuous, stochastic and tractable.

An ensemble of quantum trajectories can be constructed by adding
random noise to a deterministic evolution. But properties of quantum
measurements impose strong constraints.

• To ensure repeatability of measurement outcomes, the measurement
eigenstates need to be fixed points of the evolution. Both attraction and
noise have to vanish at the fixed points.
⇒ The evolution dynamics must be nonlinear or non-unitary.

• Lack of simultaneity in special relativity must not conflict with
probabilities of measurement outcomes in multipartite measurements.
⇒ The Born rule does not conflict with special relativity. It has to be a
constant of evolution during measurement, when averaged over the noise.
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Continuous Stochastic Measurement

Unraveling of quantum collapse:
(a) Quantum jump is discontinuous, probabilistic and irreversible.
(b) Quantum trajectories are continuous, stochastic and tractable.

An ensemble of quantum trajectories can be constructed by adding
random noise to a deterministic evolution. But properties of quantum
measurements impose strong constraints.

• To ensure repeatability of measurement outcomes, the measurement
eigenstates need to be fixed points of the evolution. Both attraction and
noise have to vanish at the fixed points.
⇒ The evolution dynamics must be nonlinear or non-unitary.

• Lack of simultaneity in special relativity must not conflict with
probabilities of measurement outcomes in multipartite measurements.
⇒ The Born rule does not conflict with special relativity. It has to be a
constant of evolution during measurement, when averaged over the noise.

Such a dynamical process exists! Gisin (1984)
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Salient Features

A precise ratio of evolution towards the measurement eigenstates and
unbiased white noise is needed to reproduce the Born rule as a constant
of evolution.

This is reminiscent of the “fluctuation-dissipation theorem” that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.
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Salient Features

A precise ratio of evolution towards the measurement eigenstates and
unbiased white noise is needed to reproduce the Born rule as a constant
of evolution.

This is reminiscent of the “fluctuation-dissipation theorem” that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.

The measurement dynamics is completely local between the system and
the apparatus, independent of any other environmental degrees of freedom.

This is also an indication that the deterministic and the stochastic contributions to
the evolution arise from the same underlying process. The rest of the environment can
influence the system only via the apparatus.
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Salient Features

A precise ratio of evolution towards the measurement eigenstates and
unbiased white noise is needed to reproduce the Born rule as a constant
of evolution.

This is reminiscent of the “fluctuation-dissipation theorem” that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.

The measurement dynamics is completely local between the system and
the apparatus, independent of any other environmental degrees of freedom.

This is also an indication that the deterministic and the stochastic contributions to
the evolution arise from the same underlying process. The rest of the environment can
influence the system only via the apparatus.

Technological advances allow us to monitor the
quantum evolution during weak measurements.
That can test the validity of the stochastic
measurement formalism, and then help us figure
out what may lie beyond.

Measurement ≡ An effective process of a more fundamental theory.
A. Patel (CHEP, IISc) Weak Measurements and Born Rule

31 July 2017, Open Quantum Systems 2017,
/ 29



Quantum Geodesic Trajectory

Leave out i [ρ,H] from the evolution description for simplicity.
Unitary interpolation between ρ and Pi gives the geodesic evolution:

d
dt
ρ = g [ρPi + Piρ− 2ρ Tr(Piρ)] .

g is the system-apparatus coupling, and t is the “measurement time”.
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Quantum Geodesic Trajectory

Leave out i [ρ,H] from the evolution description for simplicity.
Unitary interpolation between ρ and Pi gives the geodesic evolution:

d
dt
ρ = g [ρPi + Piρ− 2ρ Tr(Piρ)] .

g is the system-apparatus coupling, and t is the “measurement time”.

• This nonlinear evolution preserves ρ2 = ρ (pure states), and Tr(ρ) = 1.

• Projective measurement, ρ∗ = Pi , is the fixed point of this evolution.

• In a bipartite setting, {Pi} = {Pi1 ⊗ Pi2} and
∑

i Pi = I imply that
partial trace over the unobserved degrees of freedom (and projections)
gives the same equation for the reduced density matrix for the system.
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Quantum Geodesic Trajectory

Leave out i [ρ,H] from the evolution description for simplicity.
Unitary interpolation between ρ and Pi gives the geodesic evolution:

d
dt
ρ = g [ρPi + Piρ− 2ρ Tr(Piρ)] .

g is the system-apparatus coupling, and t is the “measurement time”.

• This nonlinear evolution preserves ρ2 = ρ (pure states), and Tr(ρ) = 1.

• Projective measurement, ρ∗ = Pi , is the fixed point of this evolution.

• In a bipartite setting, {Pi} = {Pi1 ⊗ Pi2} and
∑

i Pi = I imply that
partial trace over the unobserved degrees of freedom (and projections)
gives the same equation for the reduced density matrix for the system.

• For pure states, the equation can be written as:
d
dt
ρ = −2gL[ρ]Pi

This structure (involving the Lindblad operator) hints at an action-reaction
relation between the dynamics of the system and the apparatus.
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Ensemble of Quantum Geodesic Trajectories

The pointer basis {Pi} is fixed by the system-apparatus interaction.
A criterion is needed to determine which of the many fixed points Pi

will be approached in a particular experimental run.

Assign time-dependent real weights wi (t) to the evolution trajectory for Pi .
d
dt
ρ =

∑

i wi g [ρPi + Piρ− 2ρTr(Piρ)] ,
∑

i wi = 1 .
Evolution still preserves ρ2 = ρ. Every ρ = Pi becomes a fixed point.
wi depend only on the observed degrees of freedom (not the environment).

The sum over i has to be done for the density matrix, and not for the wavefunction.
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Ensemble of Quantum Geodesic Trajectories

The pointer basis {Pi} is fixed by the system-apparatus interaction.
A criterion is needed to determine which of the many fixed points Pi

will be approached in a particular experimental run.

Assign time-dependent real weights wi (t) to the evolution trajectory for Pi .
d
dt
ρ =

∑

i wi g [ρPi + Piρ− 2ρTr(Piρ)] ,
∑

i wi = 1 .
Evolution still preserves ρ2 = ρ. Every ρ = Pi becomes a fixed point.
wi depend only on the observed degrees of freedom (not the environment).

The sum over i has to be done for the density matrix, and not for the wavefunction.

The weighted trajectory evolution is:
d
dt
(PjρPk) = PjρPk g [wj + wk − 2

∑

i wiTr(Piρ)] .

Diagonal projections of ρ fully determine the evolution:
2

PjρPk

d
dt
(PjρPk) =

1
PjρPj

d
dt
(PjρPj) +

1
PkρPk

d
dt
(PkρPk)

The evolution is totally decoupled from the decoherence process.
There are n − 1 independent variables (diagonal projections Tr(Piρ)).
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Choice of Trajectory Weights

The diagonal projections evolve according to:
d
dt
dj = 2g dj(wj − wav) , wav ≡

∑

i widi .
Diagonal elements with wj > wav grow; those with wj < wav decay.
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Choice of Trajectory Weights

The diagonal projections evolve according to:
d
dt
dj = 2g dj(wj − wav) , wav ≡

∑

i widi .
Diagonal elements with wj > wav grow; those with wj < wav decay.

Naive guess (instantaneous Born rule): wj = w IB
j ≡ Tr(ρ(t)Pj)

The evolution converges towards the subspace specified by the dominant
diagonal projections of ρ(t = 0), i.e. the closest fixed points.
Though this result is consistent on repetition, it conflicts with experiments,
because it is (i) deterministic and (ii) does not obey the Born rule.
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Choice of Trajectory Weights

The diagonal projections evolve according to:
d
dt
dj = 2g dj(wj − wav) , wav ≡

∑

i widi .
Diagonal elements with wj > wav grow; those with wj < wav decay.

Naive guess (instantaneous Born rule): wj = w IB
j ≡ Tr(ρ(t)Pj)

The evolution converges towards the subspace specified by the dominant
diagonal projections of ρ(t = 0), i.e. the closest fixed points.
Though this result is consistent on repetition, it conflicts with experiments,
because it is (i) deterministic and (ii) does not obey the Born rule.

A way out: Instead of heading towards the nearest fixed point,
the trajectories can be made to wander around the state space and
explore other fixed points, by adding noise to the geodesic dynamics.
Properties of such a noise have to be found, while retaining

∑

i wi = 1.
The type of the noise is not universal. It depends on the choice of the apparatus.
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Quantum Diffusion: Single Qubit Measurement

The evolution equations simplify considerably for a qubit.
Let |0〉 and |1〉 be the measurement eigenstates.

d
dt
ρ00 = 2g (w0 − w1)ρ00ρ11 ,

ρ01(t) = ρ01(0)
[

ρ00(t)ρ11(t)
ρ00(0)ρ11(0)

]1/2
.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one independent
variable describes evolution of the system.
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d
dt
ρ00 = 2g (w0 − w1)ρ00ρ11 ,

ρ01(t) = ρ01(0)
[

ρ00(t)ρ11(t)
ρ00(0)ρ11(0)

]1/2
.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one independent
variable describes evolution of the system.

Evolution obeys Langevin dynamics, when unbiased white noise with
spectral density Sξ is added to w IB

i . The trajectory weights become:
w0 − w1 = ρ00 − ρ11 +

√

Sξ ξ .
〈〈ξ(t)〉〉 = 0 , 〈〈ξ(t)ξ(t ′)〉〉 = δ(t − t ′) .
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Quantum Diffusion: Single Qubit Measurement

The evolution equations simplify considerably for a qubit.
Let |0〉 and |1〉 be the measurement eigenstates.

d
dt
ρ00 = 2g (w0 − w1)ρ00ρ11 ,

ρ01(t) = ρ01(0)
[

ρ00(t)ρ11(t)
ρ00(0)ρ11(0)

]1/2
.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one independent
variable describes evolution of the system.

Evolution obeys Langevin dynamics, when unbiased white noise with
spectral density Sξ is added to w IB

i . The trajectory weights become:
w0 − w1 = ρ00 − ρ11 +

√

Sξ ξ .
〈〈ξ(t)〉〉 = 0 , 〈〈ξ(t)ξ(t ′)〉〉 = δ(t − t ′) .

This is a stochastic differential process on the interval [0, 1].
The fixed points at ρ00 = 0, 1 are perfectly absorbing boundaries.
A quantum trajectory would zig-zag through the interval
before ending at one of the two boundary points.
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Individual quantum evolution trajectories for the initial state ρ00 = 0.5, with measurement
eigenstates ρ00 = 0, 1, and in presence of measurement noise satisfying gSξ = 1.
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Single Qubit Measurement (contd.)

Let P(x) be the probability that the initial state with ρ00 = x evolves to
the fixed point at ρ00 = 1. Then by symmetry,

P(0) = 0, P(0.5) = 0.5, P(1) = 1 .
No noise : Sξ = 0 =⇒ P(x) = θ(x − 0.5) .
Only noise : Sξ → ∞ =⇒ P(x) = 0.5 .
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Single Qubit Measurement (contd.)

Let P(x) be the probability that the initial state with ρ00 = x evolves to
the fixed point at ρ00 = 1. Then by symmetry,

P(0) = 0, P(0.5) = 0.5, P(1) = 1 .
No noise : Sξ = 0 =⇒ P(x) = θ(x − 0.5) .
Only noise : Sξ → ∞ =⇒ P(x) = 0.5 .

It is instructive to convert the stochastic evolution equation from the
differential Stratonovich form to the Itô form that specifies forward
evolutionary increments:
dρ00 = 2g ρ00ρ11(ρ00 − ρ11)(1− gSξ)dt + 2g

√

Sξ ρ00ρ11 dW ,
〈〈dW (t)〉〉 = 0 , 〈〈(dW (t))2〉〉 = dt .

The Wiener increment, dW = ξ dt, can be modeled as a random walk.
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Single Qubit Measurement (contd.)

Let P(x) be the probability that the initial state with ρ00 = x evolves to
the fixed point at ρ00 = 1. Then by symmetry,

P(0) = 0, P(0.5) = 0.5, P(1) = 1 .
No noise : Sξ = 0 =⇒ P(x) = θ(x − 0.5) .
Only noise : Sξ → ∞ =⇒ P(x) = 0.5 .

It is instructive to convert the stochastic evolution equation from the
differential Stratonovich form to the Itô form that specifies forward
evolutionary increments:
dρ00 = 2g ρ00ρ11(ρ00 − ρ11)(1− gSξ)dt + 2g

√

Sξ ρ00ρ11 dW ,
〈〈dW (t)〉〉 = 0 , 〈〈(dW (t))2〉〉 = dt .

The Wiener increment, dW = ξ dt, can be modeled as a random walk.

The first term produces drift in the evolution, while the second gives rise
to diffusion. The evolution with no drift, i.e. the pure Wiener process with
gSξ = 1, is rather special:

〈〈dρ00〉〉 = 0 ⇐⇒ Born rule is a constant of evolution.
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Numerical tests were performed for different values of gSξ.
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Probability that the initial qubit state ρ00 = x evolves to the measurement eigenstate ρ00 = 1,
for different values of the measurement noise. The gSξ values label the curves.
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Ensemble Evolution Dynamics

During measurement, the probability distribution p(ρ00, t) of the set of
quantum trajectories evolves according to the Fokker-Planck equation:

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

, with gSξ = 1 .
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Ensemble Evolution Dynamics

During measurement, the probability distribution p(ρ00, t) of the set of
quantum trajectories evolves according to the Fokker-Planck equation:

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

, with gSξ = 1 .

Its exact solution corresponding to initial p(ρ00, 0) = δ(x) has two
non-interfering components with areas x and 1− x , monotonically
travelling to the boundaries at ρ00 = 1 and 0 respectively.

Let tanh(z) = ρ00 − ρ11 map ρ00 ∈ [0, 1] to z ∈ (−∞,∞). Then the two
components are Gaussians centred at z± = z0 ± gt, z0 = tanh−1(2x − 1):

p(z , t) = 1√
2πgt

(

x exp
[

− (z−z+)2

2gt

]

+ (1− x) exp
[

− (z−z−)2

2gt

]

)

.
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Ensemble Evolution Dynamics

During measurement, the probability distribution p(ρ00, t) of the set of
quantum trajectories evolves according to the Fokker-Planck equation:

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

, with gSξ = 1 .

Its exact solution corresponding to initial p(ρ00, 0) = δ(x) has two
non-interfering components with areas x and 1− x , monotonically
travelling to the boundaries at ρ00 = 1 and 0 respectively.

Let tanh(z) = ρ00 − ρ11 map ρ00 ∈ [0, 1] to z ∈ (−∞,∞). Then the two
components are Gaussians centred at z± = z0 ± gt, z0 = tanh−1(2x − 1):

p(z , t) = 1√
2πgt

(

x exp
[

− (z−z+)2

2gt

]

+ (1− x) exp
[

− (z−z−)2

2gt

]

)

.

The precise nature of this distribution is experimentally testable.
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Ensemble Evolution Dynamics

During measurement, the probability distribution p(ρ00, t) of the set of
quantum trajectories evolves according to the Fokker-Planck equation:

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

, with gSξ = 1 .

Its exact solution corresponding to initial p(ρ00, 0) = δ(x) has two
non-interfering components with areas x and 1− x , monotonically
travelling to the boundaries at ρ00 = 1 and 0 respectively.

Let tanh(z) = ρ00 − ρ11 map ρ00 ∈ [0, 1] to z ∈ (−∞,∞). Then the two
components are Gaussians centred at z± = z0 ± gt, z0 = tanh−1(2x − 1):

p(z , t) = 1√
2πgt

(

x exp
[

− (z−z+)2

2gt

]

+ (1− x) exp
[

− (z−z−)2

2gt

]

)

.

The precise nature of this distribution is experimentally testable.

Parametric freedom: With the Born rule as a constant of evolution,
g can be time-dependent, and gt is replaced by

∫ t

0 g(t ′)dt ′.
The white noise distribution remains unspecified beyond the mean and the
variance. Suitable choice can be made, e.g. Gaussian noise or Z2 noise.
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Distribution of the quantum measurement trajectories for quantum diffusion evolution of a qubit.
The initial state is ρ00(τ = 0) = 0.6, and the curves are labeled by the values of the evolution
parameter τ ≡

∫ t

0 g(t′)dt′. The narrow initial distribution splits into two non-interfering
components that converge to the measurement eigenstates at ρ00 = 1, 0 as τ → ∞.

For τ > 10, 99% of the probability is within 1% of the two fixed points.
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Experimental Setup

The system is a superconducting 3D transmon qubit.
Nonlinear oscillator consisting of a Josephson junction/SQUID shunted by a capacitor.

It possesses good coherence and is insensitive to charge noise.
Decoherence time ∼ 100µs. Individual operation time: fraction of µs.
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Nonlinear oscillator consisting of a Josephson junction/SQUID shunted by a capacitor.

It possesses good coherence and is insensitive to charge noise.
Decoherence time ∼ 100µs. Individual operation time: fraction of µs.

It is kept in a microwave resonator cavity dispersively coupled to it.
The cavity frequency depends on the qubit state, whether |0〉 or |1〉.

The cavity is probed by a microwave pulse. The scattered wave is
amplified by a near-quantum-limited Josephson parametric amplifier.

One quadrature of the signal is extracted with high gain and high accuracy.
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The cavity frequency depends on the qubit state, whether |0〉 or |1〉.

The cavity is probed by a microwave pulse. The scattered wave is
amplified by a near-quantum-limited Josephson parametric amplifier.

One quadrature of the signal is extracted with high gain and high accuracy.

Before amplification, the scattered wave passes through a one-way isolator.
Interference of the amplified wave with the reference wave yields the
quantum state signal. High frequency signal components are suppressed.

Both the cavity and the amplifier are bandwidth limited.
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Experimental Setup

The system is a superconducting 3D transmon qubit.
Nonlinear oscillator consisting of a Josephson junction/SQUID shunted by a capacitor.

It possesses good coherence and is insensitive to charge noise.
Decoherence time ∼ 100µs. Individual operation time: fraction of µs.

It is kept in a microwave resonator cavity dispersively coupled to it.
The cavity frequency depends on the qubit state, whether |0〉 or |1〉.

The cavity is probed by a microwave pulse. The scattered wave is
amplified by a near-quantum-limited Josephson parametric amplifier.

One quadrature of the signal is extracted with high gain and high accuracy.

Before amplification, the scattered wave passes through a one-way isolator.
Interference of the amplified wave with the reference wave yields the
quantum state signal. High frequency signal components are suppressed.

Both the cavity and the amplifier are bandwidth limited.

With a phase-sensitive amplifier, the scattering phase-shifts are Gaussians
peaked at the two eigenvalues. Weak measurements result when the probe
magnitude is small, making the two Gaussians closely overlap.
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Observed probability distributions of the weak measurement Stern-Gerlach signal for the two
eigenstates of a superconducting transmon qubit, for ∆t = 0.5µs. They are approximate
Gaussians, slightly displaced from each other (∆I = 1.016 ≪ σ = 9.99).
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Experimental Results

A quantum state initially polarised along X-axis is measured in the Z-basis.
The quantum state is infered from the integrated signal measurement,
according to the Bayesian formalism (I0, I1, σ are known):

ρ00(t)
ρ11(t)

= ρ00(0)
ρ11(0)

exp[−(Im(t)−I0)
2/2σ2]

exp[−(Im(t)−I1)2/2σ2]
, Im(t) =

1
t

∫ t

0 I (t ′) dt ′ .
Quantum trajectories are verified by quantum state tomography
(i.e. strong measurement at time t).
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1
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∫ t

0 I (t ′) dt ′ .
Quantum trajectories are verified by quantum state tomography
(i.e. strong measurement at time t).

Quantum diffusion is not monotonic in time (unlike spontaneous collapse).
Quantum trajectories stochastically diffuse along the meridian of the Bloch
sphere (there is no change in the phase of ρ01).
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Experimental Results

A quantum state initially polarised along X-axis is measured in the Z-basis.
The quantum state is infered from the integrated signal measurement,
according to the Bayesian formalism (I0, I1, σ are known):

ρ00(t)
ρ11(t)

= ρ00(0)
ρ11(0)

exp[−(Im(t)−I0)
2/2σ2]

exp[−(Im(t)−I1)2/2σ2]
, Im(t) =

1
t

∫ t

0 I (t ′) dt ′ .
Quantum trajectories are verified by quantum state tomography
(i.e. strong measurement at time t).

Quantum diffusion is not monotonic in time (unlike spontaneous collapse).
Quantum trajectories stochastically diffuse along the meridian of the Bloch
sphere (there is no change in the phase of ρ01).

The experimentally observed trajectory distribution fits the quantum
diffusion prediction very well, in terms of the single dimensionless
evolution parameter τ ≡ gt =

∫ t

0 g(t ′)dt ′:
χ2 < few hundred, for 100 data points and one parameter.
gt is almost linear in t, with a slower initial build-up.

Systematic errors: Initial state uncertainty, Excited state relaxation, Uncertainties in I0, I1,
Higher excited state contamination. (Detector inefficiency can be absorbed in the value of g(t).)
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Observed quantum trajectories for weak Z-measurement of a superconducting qubit.
The initial state is polarised along the X-axis. The top panels show the measured voltage
distribution as a function of time, together with a few individual contributions.
The lower panels display quantum trajectories obtained from the measured signal
(dotted lines), and those reconstructed using tomography (solid lines).

Murch et al. (2013)
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gt = 0.105, χ2 = 17.7 gt = 0.315, χ2 = 17.6 gt = 0.574, χ2 = 17.1

gt = 0.849, χ2 = 18.4 gt = 1.35, χ2 = 23.2 gt = 2.16, χ2 = 27.9

Time integrated coupling: gt = 4.7× 104t − 0.1

Evolution of the quantum trajectory distribution for weak Z-measurement of a superconducting
transmon qubit initially polarised along the X-axis. The histograms represent the experimental
data for an ensemble of 4× 105 trajectories. The curves are the fits to the quantum diffusion
distribution, with the single dimensionless evolution parameter τ ≡ gt ∈ [0, 2.2].
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Evolution of the quantum trajectory distribution for weak Z-measurement of a superconducting
transmon qubit with the initial state ρ00 = 0.3. The histograms represent the experimental data
for an ensemble of 1× 106 trajectories. The curves are the fits to the quantum diffusion model
distribution, including the effect of T1, and with the evoltion parameter τ ≡ gt ∈ [0, 1.2].
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The best fit values of the integrated measurement coupling τ ≡
∫ t

0 g dt, when experimental
data for weak Z-measurement of a superconducting transmon qubit with different initial states
ρ00(0), are compared to the theoretical predictions. It is obvious that τ is independent of the
initial state, and varies almost linearly with time after a slower initial build-up.
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Fluctuation-Dissipation Relation

The geodesic parameter is ρ00 − ρ11, with fixed points at ±1.
The size of the fluctuations is, dropping the subleading o(dt) terms:

〈〈(dρ00 − dρ11)
2〉〉 = 16g2Sξ ρ

2
00ρ

2
11 dt .

The geodesic evolution term is:
(dρ00 − dρ11)geo = 4g(ρ00 − ρ11)ρ00ρ11 dt .
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The geodesic parameter is ρ00 − ρ11, with fixed points at ±1.
The size of the fluctuations is, dropping the subleading o(dt) terms:

〈〈(dρ00 − dρ11)
2〉〉 = 16g2Sξ ρ

2
00ρ

2
11 dt .

The geodesic evolution term is:
(dρ00 − dρ11)geo = 4g(ρ00 − ρ11)ρ00ρ11 dt .

The constraint gSξ = 1 gives the coupling-free relation:

〈〈(dρ00 − dρ11)
2〉〉 = 4ρ00ρ11

(dρ00−dρ11)geo
ρ00−ρ11

.

The proportionality factor between the noise and the damping term is not
a constant, because of the nonlinearity of the evolution, but it becomes
independent of g dt when the Born rule is satisfied.
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The geodesic parameter is ρ00 − ρ11, with fixed points at ±1.
The size of the fluctuations is, dropping the subleading o(dt) terms:

〈〈(dρ00 − dρ11)
2〉〉 = 16g2Sξ ρ

2
00ρ

2
11 dt .

The geodesic evolution term is:
(dρ00 − dρ11)geo = 4g(ρ00 − ρ11)ρ00ρ11 dt .

The constraint gSξ = 1 gives the coupling-free relation:

〈〈(dρ00 − dρ11)
2〉〉 = 4ρ00ρ11

(dρ00−dρ11)geo
ρ00−ρ11

.

The proportionality factor between the noise and the damping term is not
a constant, because of the nonlinearity of the evolution, but it becomes
independent of g dt when the Born rule is satisfied.

In general stochastic processes, vanishing drift and fluctuation-dissipation
relation are quite unrelated properties, involving first and second moments
of the distribution respectively. The fact that both lead to the Born rule is
an exceptional feature of quantum trajectory dynamics.
Implication: The environment can influence the measurement process only via the apparatus.
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Notable Features

• Individual quantum trajectories evolve unitarily, even in presence of the
noise. Mixed states arise when multiple trajectories with different noise
histories are averaged over.
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Notable Features

• Individual quantum trajectories evolve unitarily, even in presence of the
noise. Mixed states arise when multiple trajectories with different noise
histories are averaged over.

• The trajectory weights wi are real, but are not restricted to [0, 1].
They cannot be interpreted as probabilities.
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• The trajectory weights wi are real, but are not restricted to [0, 1].
They cannot be interpreted as probabilities.

• Each noise history wi (t) can be associated with an individual
experimental run—one of the many worlds in the ensemble.
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histories are averaged over.

• The trajectory weights wi are real, but are not restricted to [0, 1].
They cannot be interpreted as probabilities.

• Each noise history wi (t) can be associated with an individual
experimental run—one of the many worlds in the ensemble.

• When the Born rule is satisfied, free reparametrisation of the
“measurement time” is allowed, but no other freedom. This choice governs
the collapse time scale, and is fully local for each system-apparatus pair.

A. Patel (CHEP, IISc) Weak Measurements and Born Rule
31 July 2017, Open Quantum Systems 2017,

/ 29



Notable Features

• Individual quantum trajectories evolve unitarily, even in presence of the
noise. Mixed states arise when multiple trajectories with different noise
histories are averaged over.

• The trajectory weights wi are real, but are not restricted to [0, 1].
They cannot be interpreted as probabilities.

• Each noise history wi (t) can be associated with an individual
experimental run—one of the many worlds in the ensemble.

• When the Born rule is satisfied, free reparametrisation of the
“measurement time” is allowed, but no other freedom. This choice governs
the collapse time scale, and is fully local for each system-apparatus pair.

• The evolution of individual trajectories is nonlinear, while the ensemble
averaged evolution obeys a linear Lindblad master equation.
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Notable Features

• Individual quantum trajectories evolve unitarily, even in presence of the
noise. Mixed states arise when multiple trajectories with different noise
histories are averaged over.

• The trajectory weights wi are real, but are not restricted to [0, 1].
They cannot be interpreted as probabilities.

• Each noise history wi (t) can be associated with an individual
experimental run—one of the many worlds in the ensemble.

• When the Born rule is satisfied, free reparametrisation of the
“measurement time” is allowed, but no other freedom. This choice governs
the collapse time scale, and is fully local for each system-apparatus pair.

• The evolution of individual trajectories is nonlinear, while the ensemble
averaged evolution obeys a linear Lindblad master equation.

• Measurement outcomes are independent of ρi 6=j , and so are unaffected
by decoherence. A different noise can be added to the phases of ρi 6=j

without spoiling the evolution of ρii and conflicting with the Born rule.
A. Patel (CHEP, IISc) Weak Measurements and Born Rule
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Origin of Noise

The quadratically nonlinear quantum measurement equation for
state collapse supplements the Schrödinger evolution:

dρ = i [ρ,H]dt +
∑

i wi g [ρPi + Piρ− 2ρTr(ρPi )] dt + noise .
The underlying dynamics is the system-apparatus measurement
interaction, and the nature of the noise depends on it.
What mechanism can simultaneously produce attraction towards the
measurement eigenstates (geodesic evolution) and irreducible noise
(stochastic fluctuations), with precisely related magnitudes?

Apparatus-dependent noise ⇐⇒ System-dependent Born rule
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state collapse supplements the Schrödinger evolution:

dρ = i [ρ,H]dt +
∑

i wi g [ρPi + Piρ− 2ρTr(ρPi )] dt + noise .
The underlying dynamics is the system-apparatus measurement
interaction, and the nature of the noise depends on it.
What mechanism can simultaneously produce attraction towards the
measurement eigenstates (geodesic evolution) and irreducible noise
(stochastic fluctuations), with precisely related magnitudes?

Apparatus-dependent noise ⇐⇒ System-dependent Born rule

Amplification incorporates quantum noise when the extracted information
is not allowed to return (e.g. spontaneous vs. stimulated emission).
Does chaotic delocalisation of the entangled degree of freedom inside the
apparatus give rise to irreversibility? (Generally apparatus ≫ system.)
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Origin of Noise

The quadratically nonlinear quantum measurement equation for
state collapse supplements the Schrödinger evolution:

dρ = i [ρ,H]dt +
∑

i wi g [ρPi + Piρ− 2ρTr(ρPi )] dt + noise .
The underlying dynamics is the system-apparatus measurement
interaction, and the nature of the noise depends on it.
What mechanism can simultaneously produce attraction towards the
measurement eigenstates (geodesic evolution) and irreducible noise
(stochastic fluctuations), with precisely related magnitudes?

Apparatus-dependent noise ⇐⇒ System-dependent Born rule

Amplification incorporates quantum noise when the extracted information
is not allowed to return (e.g. spontaneous vs. stimulated emission).
Does chaotic delocalisation of the entangled degree of freedom inside the
apparatus give rise to irreversibility? (Generally apparatus ≫ system.)

The measurement problem, i.e. the location of the “Heisenberg Cut”
separating the quantum and the classical behaviour, is thus shifted
higher up in the dynamics of the apparatus-dependent amplification.

The Born rule is separated from this problem.A. Patel (CHEP, IISc) Weak Measurements and Born Rule
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Einstein strikes back!
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Work in Progress

A model for the measurement apparatus is needed to understand where
the noise comes from. The observed signal is amplified, often nonlinearly,
from the quantum to the classical regime.

A. Patel (CHEP, IISc) Weak Measurements and Born Rule
31 July 2017, Open Quantum Systems 2017,

/ 29



Work in Progress

A model for the measurement apparatus is needed to understand where
the noise comes from. The observed signal is amplified, often nonlinearly,
from the quantum to the classical regime.

Coherent states that continuously interpolate between quantum and
classical regimes are a convenient choice for the apparatus pointer states.

|α〉 ≡ eαa
†−α∗a|0〉 = e−|α|2/2∑∞

n=0
αn√
n!
|n〉 .

Coherent states are the minimum uncertainty (equal to the zero-point
fluctuations) states in the Fock space.
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Work in Progress

A model for the measurement apparatus is needed to understand where
the noise comes from. The observed signal is amplified, often nonlinearly,
from the quantum to the classical regime.

Coherent states that continuously interpolate between quantum and
classical regimes are a convenient choice for the apparatus pointer states.

|α〉 ≡ eαa
†−α∗a|0〉 = e−|α|2/2∑∞

n=0
αn√
n!
|n〉 .

Coherent states are the minimum uncertainty (equal to the zero-point
fluctuations) states in the Fock space.

The von Neumann interaction can amplify α and separate the pointer
states. For measurement of a qubit using the electromagnetic field in a
cavity, the von Neumann interaction gives:

Hint = ig |1〉〈1| ⊗ (a† − a) ,
|0〉S |0〉A −→ |0〉S |0〉A , |1〉S |0〉A −→ |1〉S |α = gt〉A .

Irreversibility needs to be added to this dynamics, possibly as a boundary
condition, to convert entanglement into measurement.
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