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Abstract

Projective measurement is used as a fundamental axiom in quantum mechanics, even though it

is discontinuous and cannot predict which measured operator eigenstate will be observed in

which experimental run. The probabilistic Born rule gives it an ensemble interpretation,

predicting proportions of various outcomes over many experimental runs. Understanding gradual

weak measurements requires replacing this scenario with a dynamical evolution equation for the

collapse of the quantum state in individual experimental runs. We revisit the quantum trajectory

framework that models quantum measurement as a continuous nonlinear stochastic process. We

investigate the restrictions needed on the ensemble of quantum trajectories so as to reproduce

projective measurement in the appropriate limit. We can describe the ensemble of quantum

trajectories as white noise fluctuations on top of geodesics that attract the quantum state

towards the measured operator eigenstates. The Born rule is reproduced when the magnitudes

of the noise and the attraction are precisely related, in a manner reminiscent of the

fluctuation-dissipation theorem. That implies that the noise and the attraction have a common

origin in the system-apparatus measurement interaction. Moreover, the ensemble distribution of

quantum trajectories is completely determined in terms of a single evolution parameter, which

can be tested in weak measurement experiments.
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Axioms of Quantum Dynamics

(1) Unitary evolution (Schrödinger):
i d
dt
|ψ〉 = H|ψ〉 , i d

dt
ρ = [H, ρ] .

Continuous, Reversible, Deterministic.
Pure state evolves to pure state.
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(1) Unitary evolution (Schrödinger):
i d
dt
|ψ〉 = H|ψ〉 , i d

dt
ρ = [H, ρ] .

Continuous, Reversible, Deterministic.
Pure state evolves to pure state.

(2) Projective measurement (von Neumann):

|ψ〉 −→ Pi |ψ〉/|Pi |ψ〉|, Pi = P†
i , PiPj = Piδij ,

∑

i Pi = I .
Discontinuous, Irreversible, Probabilistic choice of “i”.
Pure state evolves to pure state. Consistent on repetition.

{Pi} is fixed by the measurement apparatus eigenstates. But there is
no prediction for which “i” will occur in a particular experimental run.

This is the crux of “the measurement problem”.
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Axioms of Quantum Dynamics

(1) Unitary evolution (Schrödinger):
i d
dt
|ψ〉 = H|ψ〉 , i d

dt
ρ = [H, ρ] .

Continuous, Reversible, Deterministic.
Pure state evolves to pure state.

(2) Projective measurement (von Neumann):

|ψ〉 −→ Pi |ψ〉/|Pi |ψ〉|, Pi = P†
i , PiPj = Piδij ,

∑

i Pi = I .
Discontinuous, Irreversible, Probabilistic choice of “i”.
Pure state evolves to pure state. Consistent on repetition.

{Pi} is fixed by the measurement apparatus eigenstates. But there is
no prediction for which “i” will occur in a particular experimental run.

This is the crux of “the measurement problem”.

Instead, with Born rule and ensemble interpretation,
prob(i) = 〈ψ|Pi |ψ〉 = Tr(Piρ) , ρ −→ ∑

i PiρPi .
Pure state evolves to mixed state. Predicted expectation values are
averages over many experimental runs.

A. Patel (CHEP, IISc) Weak Measurements and Born Rule
19 October 2016, ICQF16, NIT, Patna 3

/ 32



Quantum Measurement Terminology

ρi =

(

a c
c∗ b

)

Decoherence ρr =

(

a 0
0 b

)

Quantum
jump

ρf =

(

1 0
0 0

)

or

(

0 0
0 1

)

Collapse

The evolution steps involved in the quantum measurement process for a qubit
(ρi and ρf are pure states, while ρr is obtained from an entangled state):
(a) Decoherence deterministically entangles the system with its environment, and drives the
off-diagonal reduced density matrix components to zero. Magnitudes of the off-diagonal
components are not changed, but their phases are randomised by environmental scattering.
(b) Quantum jump removes the system-apparatus entanglement, and probabilistically converts
the diagonal reduced density matrix into a measurement eigenstate.
(c) Collapse is the overall process that yields measurement eigenstates probabilistically.
It describes individual experimental outcomes, and may or may not go through decoherence.

A. Patel (CHEP, IISc) Weak Measurements and Born Rule
19 October 2016, ICQF16, NIT, Patna 4

/ 32



Terminology (contd.)

Decoherence traces over all the unobserved environmental degrees of
freedom. It diagonalises the reduced density matrix in the prefered basis,
which is the pointer basis in case of measurement.
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Terminology (contd.)

Decoherence traces over all the unobserved environmental degrees of
freedom. It diagonalises the reduced density matrix in the prefered basis,
which is the pointer basis in case of measurement.

von Neumann “non-demolition” interaction is a particular aspect of the
decoherence paradigm. It creates perfect entanglement between the
measured eigenstates of the system and the pointer basis states of the
apparatus.

HvN = g xS ⊗ pA : |x〉S |0〉A −→ |x〉S |x〉A
For a qubit, this is the C-not operation. It is reversible.

A. Patel (CHEP, IISc) Weak Measurements and Born Rule
19 October 2016, ICQF16, NIT, Patna 5

/ 32



Terminology (contd.)

Decoherence traces over all the unobserved environmental degrees of
freedom. It diagonalises the reduced density matrix in the prefered basis,
which is the pointer basis in case of measurement.

von Neumann “non-demolition” interaction is a particular aspect of the
decoherence paradigm. It creates perfect entanglement between the
measured eigenstates of the system and the pointer basis states of the
apparatus.
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A measurement interaction is the one where the apparatus does not
remain in a superposition of pointer states.
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Terminology (contd.)

Decoherence traces over all the unobserved environmental degrees of
freedom. It diagonalises the reduced density matrix in the prefered basis,
which is the pointer basis in case of measurement.

von Neumann “non-demolition” interaction is a particular aspect of the
decoherence paradigm. It creates perfect entanglement between the
measured eigenstates of the system and the pointer basis states of the
apparatus.

HvN = g xS ⊗ pA : |x〉S |0〉A −→ |x〉S |x〉A
For a qubit, this is the C-not operation. It is reversible.

A measurement interaction is the one where the apparatus does not
remain in a superposition of pointer states.

Unraveling of quantum collapse:
(a) Quantum jump is discontinuous, probabilistic and irreversible.
(b) Quantum trajectories are continuous, stochastic and tractable.
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Weak Measurements

Information about the measured observable is extracted from the system
at a slow rate (e.g. by weak coupling). Stretching out the time scale can
allow one to monitor collapse of the system to a measurement eigenstate.
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Weak Measurements

Information about the measured observable is extracted from the system
at a slow rate (e.g. by weak coupling). Stretching out the time scale can
allow one to monitor collapse of the system to a measurement eigenstate.

New questions:
• Can all measurements be made continuous? What about decays?
• How is the projection replaced by a continuous evolution?
• What is the local evolution rule during measurement?
• What is the state if the measurement is left incomplete?
• How is the ensemble to be interpreted?
• How should multipartite measurements be described?
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Weak Measurements

Information about the measured observable is extracted from the system
at a slow rate (e.g. by weak coupling). Stretching out the time scale can
allow one to monitor collapse of the system to a measurement eigenstate.

New questions:
• Can all measurements be made continuous? What about decays?
• How is the projection replaced by a continuous evolution?
• What is the local evolution rule during measurement?
• What is the state if the measurement is left incomplete?
• How is the ensemble to be interpreted?
• How should multipartite measurements be described?

The answers are important for increasing accuracy of quantum control and
feedback. Knowledge of what happens in a particular experimental run
(and not just the ensemble average) can improve efficiency and stability.

The projective measurement axiom needs to be replaced by a different
continuous stochastic dynamics.
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Continuous Stochastic Measurement

A set of quantum trajectories can be realised by adding random noise to a
deterministic process. Such a conversion of deterministic evolution into a
Langevin equation retains ensemble interpretation. But properties of
quantum measurements impose strong constraints.
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Continuous Stochastic Measurement

A set of quantum trajectories can be realised by adding random noise to a
deterministic process. Such a conversion of deterministic evolution into a
Langevin equation retains ensemble interpretation. But properties of
quantum measurements impose strong constraints.

• To ensure repeatability of measurement outcomes, the measurement
eigenstates need to be fixed points of the evolution. Both attraction and
noise have to vanish at the fixed points.
⇒ The evolution dynamics must be nonlinear.
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deterministic process. Such a conversion of deterministic evolution into a
Langevin equation retains ensemble interpretation. But properties of
quantum measurements impose strong constraints.

• To ensure repeatability of measurement outcomes, the measurement
eigenstates need to be fixed points of the evolution. Both attraction and
noise have to vanish at the fixed points.
⇒ The evolution dynamics must be nonlinear.

• Probabilities of measurement outcomes need to be maintained during
evolution. Lack of simultaneity in special relativity must not conflict with
execution of multipartite measurements.
⇒ The Born rule has to be a constant of evolution during measurement,
when averaged over the noise.
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Continuous Stochastic Measurement

A set of quantum trajectories can be realised by adding random noise to a
deterministic process. Such a conversion of deterministic evolution into a
Langevin equation retains ensemble interpretation. But properties of
quantum measurements impose strong constraints.

• To ensure repeatability of measurement outcomes, the measurement
eigenstates need to be fixed points of the evolution. Both attraction and
noise have to vanish at the fixed points.
⇒ The evolution dynamics must be nonlinear.

• Probabilities of measurement outcomes need to be maintained during
evolution. Lack of simultaneity in special relativity must not conflict with
execution of multipartite measurements.
⇒ The Born rule has to be a constant of evolution during measurement,
when averaged over the noise.

Such a dynamical process exists! Gisin (1984)
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Salient Features

A precise ratio of evolution towards the measurement eigenstates and
unbiased white noise is needed to reproduce the Born rule as a constant
of evolution.

This is reminiscent of the “fluctuation-dissipation theorem” that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.
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A precise ratio of evolution towards the measurement eigenstates and
unbiased white noise is needed to reproduce the Born rule as a constant
of evolution.

This is reminiscent of the “fluctuation-dissipation theorem” that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.

The measurement dynamics is completely local between the system and
the apparatus, independent of any other environmental degrees of freedom.

This is also an indication that the deterministic and the stochastic contributions
to the evolution arise from the same underlying process.
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Salient Features

A precise ratio of evolution towards the measurement eigenstates and
unbiased white noise is needed to reproduce the Born rule as a constant
of evolution.

This is reminiscent of the “fluctuation-dissipation theorem” that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.

The measurement dynamics is completely local between the system and
the apparatus, independent of any other environmental degrees of freedom.

This is also an indication that the deterministic and the stochastic contributions
to the evolution arise from the same underlying process.

Technological advances allow us to monitor the
quantum evolution during weak measurements.
That can test the validity of the stochastic
measurement formalism, and then help us figure
out what may lie beyond.

Measurement ≡ An effective process of a more fundamental theory.
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Beyond Quantum Mechanics

Physical:
(1) Hidden variables with novel dynamics may produce quantum
mechanics as an effective theory, with extra rules supplementing
Schrödinger’s equation.
(2) CMBR or gravity can produce effects that modify quantum dynamics
at macroscopic scales.
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Beyond Quantum Mechanics

Physical:
(1) Hidden variables with novel dynamics may produce quantum
mechanics as an effective theory, with extra rules supplementing
Schrödinger’s equation.
(2) CMBR or gravity can produce effects that modify quantum dynamics
at macroscopic scales.

Philosophical:
(1) What is real (ontology) may not be the same as what is observable
(epistemology).
(2) Human beings have only limited capacity and cannot comprehend
everything in the universe.
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Beyond Quantum Mechanics

Physical:
(1) Hidden variables with novel dynamics may produce quantum
mechanics as an effective theory, with extra rules supplementing
Schrödinger’s equation.
(2) CMBR or gravity can produce effects that modify quantum dynamics
at macroscopic scales.

Philosophical:
(1) What is real (ontology) may not be the same as what is observable
(epistemology).
(2) Human beings have only limited capacity and cannot comprehend
everything in the universe.

Bypass:
Many worlds interpretation—each evolutionary branch is a different world,
and we only observe the measurement outcome corresponding to the world
we live in (anthropic principle).

Uncountable proliferation of evolutionary branches is highly ungainly.
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Quantum Geodesic Trajectory

Let the projective measurement arise from a continuous geodesic
evolution, with parameter s ∈ [0, 1]:

|ψ〉 −→ Qi (s)|ψ〉/|Qi (s)|ψ〉| , Qi (s) = (1− s)I + sPi .

Then the quantum trajectory evolves as

ρ −→ (1−s)2ρ+s(1−s)(ρPi+Piρ)+s2PiρPi

(1−s)2+(2s−s2)Tr(Piρ)
, Tr(ρ) = 1 .
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Quantum Geodesic Trajectory

Let the projective measurement arise from a continuous geodesic
evolution, with parameter s ∈ [0, 1]:

|ψ〉 −→ Qi (s)|ψ〉/|Qi (s)|ψ〉| , Qi (s) = (1− s)I + sPi .

Then the quantum trajectory evolves as

ρ −→ (1−s)2ρ+s(1−s)(ρPi+Piρ)+s2PiρPi

(1−s)2+(2s−s2)Tr(Piρ)
, Tr(ρ) = 1 .

Expansion around s = 0 gives the geodesic evolution equation:

d
dt
ρ = g [ρPi + Piρ− 2ρ Tr(Piρ)] .

s → gt in terms of the system-apparatus coupling g , and the “measurement time” t.
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Quantum Geodesic Trajectory

Let the projective measurement arise from a continuous geodesic
evolution, with parameter s ∈ [0, 1]:
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Then the quantum trajectory evolves as

ρ −→ (1−s)2ρ+s(1−s)(ρPi+Piρ)+s2PiρPi

(1−s)2+(2s−s2)Tr(Piρ)
, Tr(ρ) = 1 .

Expansion around s = 0 gives the geodesic evolution equation:

d
dt
ρ = g [ρPi + Piρ− 2ρ Tr(Piρ)] .

s → gt in terms of the system-apparatus coupling g , and the “measurement time” t.

• This nonlinear evolution preserves pure states,
ρ2 = ρ =⇒ d

dt
(ρ2 − ρ) = ρ d

dt
ρ+ ( d

dt
ρ)ρ− d

dt
ρ = 0 ,

in addition to maintaining Tr(ρ) = 1.
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Quantum Geodesic Trajectory

Let the projective measurement arise from a continuous geodesic
evolution, with parameter s ∈ [0, 1]:

|ψ〉 −→ Qi (s)|ψ〉/|Qi (s)|ψ〉| , Qi (s) = (1− s)I + sPi .

Then the quantum trajectory evolves as

ρ −→ (1−s)2ρ+s(1−s)(ρPi+Piρ)+s2PiρPi

(1−s)2+(2s−s2)Tr(Piρ)
, Tr(ρ) = 1 .

Expansion around s = 0 gives the geodesic evolution equation:

d
dt
ρ = g [ρPi + Piρ− 2ρ Tr(Piρ)] .

s → gt in terms of the system-apparatus coupling g , and the “measurement time” t.

• This nonlinear evolution preserves pure states,
ρ2 = ρ =⇒ d

dt
(ρ2 − ρ) = ρ d

dt
ρ+ ( d

dt
ρ)ρ− d

dt
ρ = 0 ,

in addition to maintaining Tr(ρ) = 1.

• Projective measurement is the fixed point of this equation:
d
dt
ρ = 0 at ρ∗ = PiρPi/Tr(Piρ) .

Convergence to fixed point makes the measurement consistent on repetition.
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d
dt
ρ = g [ρPi + Piρ− 2ρTr(Piρ)]

For pure states: d
dt
|ψ〉 = g(Pi − 〈ψ|Pi |ψ〉)|ψ〉, 〈ψ| d

dt
|ψ〉 = 0.
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d
dt
ρ = g [ρPi + Piρ− 2ρTr(Piρ)]

For pure states: d
dt
|ψ〉 = g(Pi − 〈ψ|Pi |ψ〉)|ψ〉, 〈ψ| d

dt
|ψ〉 = 0.

• In a bipartite setting, {Pi} = {Pi1 ⊗ Pi2}. The evolution is linear in the
projection operators, and

∑

i Pi = I . So partial trace over the unobserved
environment gives the same equation for the reduced density matrix for
the system.

Purification is a consequence of the unchanged fixed point.
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d
dt
ρ = g [ρPi + Piρ− 2ρTr(Piρ)]

For pure states: d
dt
|ψ〉 = g(Pi − 〈ψ|Pi |ψ〉)|ψ〉, 〈ψ| d

dt
|ψ〉 = 0.

• In a bipartite setting, {Pi} = {Pi1 ⊗ Pi2}. The evolution is linear in the
projection operators, and

∑

i Pi = I . So partial trace over the unobserved
environment gives the same equation for the reduced density matrix for
the system.

Purification is a consequence of the unchanged fixed point.

• Asymptotic convergence to the fixed point is exponential,
with ||ρ− Pi || ∼ e−2gt , similar to the charging of a capacitor.
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d
dt
ρ = g [ρPi + Piρ− 2ρTr(Piρ)]

For pure states: d
dt
|ψ〉 = g(Pi − 〈ψ|Pi |ψ〉)|ψ〉, 〈ψ| d

dt
|ψ〉 = 0.

• In a bipartite setting, {Pi} = {Pi1 ⊗ Pi2}. The evolution is linear in the
projection operators, and

∑

i Pi = I . So partial trace over the unobserved
environment gives the same equation for the reduced density matrix for
the system.

Purification is a consequence of the unchanged fixed point.

• Asymptotic convergence to the fixed point is exponential,
with ||ρ− Pi || ∼ e−2gt , similar to the charging of a capacitor.

• For pure states, the equation can be written as:
d
dt
ρ = −2gL[ρ]Pi

This structure (involving the Lindblad operator) hints at an action-reaction
relation between the processes of decoherence and collapse, possibly
following from a conservation law.

Interpretation: When L[ρ]Pi decoheres the apparatus pointer state Pi

(it cannot remain in superposition by definition), there is an equal and
opposite effect −L[ρ]Pi on the system state ρ leading to its collapse.
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Ensemble of Quantum Geodesic Trajectories

The prefered basis {Pi} is fixed by the system-apparatus interaction, but
there are many fixed points, requiring a separate criterion to determine
which Pi will occur in a particular experimental run.

Quantum jump: The geodesic trajectory is chosen at some point during
the measurement and remains unaltered thereafter.

The Born rule fixes the probabilities of various quantum jumps.
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The prefered basis {Pi} is fixed by the system-apparatus interaction, but
there are many fixed points, requiring a separate criterion to determine
which Pi will occur in a particular experimental run.

Quantum jump: The geodesic trajectory is chosen at some point during
the measurement and remains unaltered thereafter.

The Born rule fixes the probabilities of various quantum jumps.

Such a choice may be justified for a ”sudden impulsive measurement”,
but not for a ”gradual weak measurement”.

For describing evolution during weak measurements, a local dynamical rule
governing quantum trajectories is desirable.
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Ensemble of Quantum Geodesic Trajectories

The prefered basis {Pi} is fixed by the system-apparatus interaction, but
there are many fixed points, requiring a separate criterion to determine
which Pi will occur in a particular experimental run.

Quantum jump: The geodesic trajectory is chosen at some point during
the measurement and remains unaltered thereafter.

The Born rule fixes the probabilities of various quantum jumps.

Such a choice may be justified for a ”sudden impulsive measurement”,
but not for a ”gradual weak measurement”.

For describing evolution during weak measurements, a local dynamical rule
governing quantum trajectories is desirable.

Assign time-dependent real weights wi (t) to the evolution trajectories for
Pi , which depend only on the measured degrees of freedom:

d
dt
ρ =

∑

i wi g [ρPi + Piρ− 2ρTr(Piρ)] ,
∑

i wi = 1 .
Evolution still preserves ρ2 = ρ. Every ρ = Pi becomes a fixed point.
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Ensemble Evolution

The weighted trajectory evolution is:
d
dt
(PjρPk) = PjρPk g [wj + wk − 2

∑

i wiTr(Piρ)] .
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Ensemble Evolution

The weighted trajectory evolution is:
d
dt
(PjρPk) = PjρPk g [wj + wk − 2

∑

i wiTr(Piρ)] .

Diagonal projections of ρ fully determine the evolution:
2

PjρPk

d
dt
(PjρPk) =

1
PjρPj

d
dt
(PjρPj) +

1
PkρPk

d
dt
(PkρPk)

The evolution is totally decoupled from the decoherence process.
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Ensemble Evolution

The weighted trajectory evolution is:
d
dt
(PjρPk) = PjρPk g [wj + wk − 2

∑

i wiTr(Piρ)] .

Diagonal projections of ρ fully determine the evolution:
2

PjρPk

d
dt
(PjρPk) =

1
PjρPj

d
dt
(PjρPj) +

1
PkρPk

d
dt
(PkρPk)

The evolution is totally decoupled from the decoherence process.

For one-dimensional projections, Pjρ(t)Pj = dj(t)Pj ,

dj ≥ 0 , Pjρ(t)Pk = Pjρ(0)Pk

[

dj (t)dk(t)
dj (0)dk (0)

]1/2
.

Phases of the off-diagonal projections PjρPk do not change.
Also, off-diagonal PjρPk may not vanish asymptotically.

There are n − 1 independent variables (diagonal projections Tr(Piρ)).
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Ensemble Evolution

The weighted trajectory evolution is:
d
dt
(PjρPk) = PjρPk g [wj + wk − 2

∑

i wiTr(Piρ)] .

Diagonal projections of ρ fully determine the evolution:
2

PjρPk

d
dt
(PjρPk) =

1
PjρPj

d
dt
(PjρPj) +

1
PkρPk

d
dt
(PkρPk)

The evolution is totally decoupled from the decoherence process.

For one-dimensional projections, Pjρ(t)Pj = dj(t)Pj ,

dj ≥ 0 , Pjρ(t)Pk = Pjρ(0)Pk

[

dj (t)dk(t)
dj (0)dk (0)

]1/2
.

Phases of the off-diagonal projections PjρPk do not change.
Also, off-diagonal PjρPk may not vanish asymptotically.

There are n − 1 independent variables (diagonal projections Tr(Piρ)).

The diagonal projections evolve according to:
d
dt
dj = 2g dj(wj − wav) , wav ≡ ∑

i widi .
Evolution is restricted to the subspace spanned by all the dj(t = 0) 6= 0.
Diagonal elements with wj > wav grow; those with wj < wav decay.

This behaviour is stable under small perturbations of ρ.
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Choice of Trajectory Weights

Instantaneous Born rule: wj = w IB
j ≡ Tr(ρ(t)Pj)

This is a local and appealing choice for the trajectory weights throughout
the measurement process. Then

d
dt
(PjρPk) = PjρPk g [w IB

j + w IB
k − 2

∑

i (w
IB
i )2] .
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Choice of Trajectory Weights

Instantaneous Born rule: wj = w IB
j ≡ Tr(ρ(t)Pj)

This is a local and appealing choice for the trajectory weights throughout
the measurement process. Then

d
dt
(PjρPk) = PjρPk g [w IB

j + w IB
k − 2

∑

i (w
IB
i )2] .

The evolution converges towards the subspace specified by the dominant
diagonal projections of ρ(t = 0), i.e. the closest fixed points.
Though this result is consistent on repetition, it conflicts with experiments,
because it is (i) deterministic and (ii) does not obey the Born rule.
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The evolution converges towards the subspace specified by the dominant
diagonal projections of ρ(t = 0), i.e. the closest fixed points.
Though this result is consistent on repetition, it conflicts with experiments,
because it is (i) deterministic and (ii) does not obey the Born rule.

A way out: Instead of heading towards the nearest fixed point,
the trajectories can be made to wander around the state space and
explore other fixed points, by adding noise to the geodesic dynamics.
Properties of such a noise have to be found, while retaining

∑

i wi = 1.
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The evolution converges towards the subspace specified by the dominant
diagonal projections of ρ(t = 0), i.e. the closest fixed points.
Though this result is consistent on repetition, it conflicts with experiments,
because it is (i) deterministic and (ii) does not obey the Born rule.

A way out: Instead of heading towards the nearest fixed point,
the trajectories can be made to wander around the state space and
explore other fixed points, by adding noise to the geodesic dynamics.
Properties of such a noise have to be found, while retaining

∑

i wi = 1.

Noise can be added to the geodesic trajectory weights wi , in a structure
similar to the variational calculus. Possibilities include:
(a) White noise (quantum diffusion), (b) Shot noise (quantum jump).
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Quantum Diffusion: Single Qubit Measurement

The evolution equations simplify considerably for a qubit.
Let |0〉 and |1〉 be the measurement eigenstates.

d
dt
ρ00 = 2g (w0 − w1)ρ00ρ11 ,

ρ01(t) = ρ01(0)
[

ρ00(t)ρ11(t)
ρ00(0)ρ11(0)

]1/2
.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one independent
variable describes evolution of the system.
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ρ00(0)ρ11(0)

]1/2
.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one independent
variable describes evolution of the system.

Evolution obeys Langevin dynamics, when unbiased white noise with
spectral density Sξ is added to w IB

i . The trajectory weights become:
w0 − w1 = ρ00 − ρ11 +

√

Sξ ξ .
〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t ′)〉 = δ(t − t ′) .
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.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one independent
variable describes evolution of the system.

Evolution obeys Langevin dynamics, when unbiased white noise with
spectral density Sξ is added to w IB

i . The trajectory weights become:
w0 − w1 = ρ00 − ρ11 +

√

Sξ ξ .
〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t ′)〉 = δ(t − t ′) .

This is a stochastic differential process on the interval [0, 1].
The fixed points at ρ00 = 0, 1 are perfectly absorbing boundaries.
A quantum trajectory would zig-zag through the interval
before ending at one of the two boundary points.
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Individual quantum evolution trajectories for the initial state ρ00 = 0.5, with measurement
eigenstates ρ00 = 0, 1, and in presence of measurement noise satisfying gSξ = 1.
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Single Qubit Measurement (contd.)

Let P(x) be the probability that the initial state with ρ00 = x evolves to
the fixed point at ρ00 = 1. Then by symmetry,

P(0) = 0, P(0.5) = 0.5, P(1) = 1 .
No noise : Sξ = 0 =⇒ P(x) = θ(x − 0.5) .
Only noise : Sξ → ∞ =⇒ P(x) = 0.5 .
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the fixed point at ρ00 = 1. Then by symmetry,

P(0) = 0, P(0.5) = 0.5, P(1) = 1 .
No noise : Sξ = 0 =⇒ P(x) = θ(x − 0.5) .
Only noise : Sξ → ∞ =⇒ P(x) = 0.5 .

It is instructive to convert the stochastic evolution equation from the
differential Stratonovich form to the Itô form that specifies forward
evolutionary increments:
dρ00 = 2g ρ00ρ11(ρ00 − ρ11)(1− gSξ)dt + 2g

√

Sξ ρ00ρ11 dW ,
〈dW (t)〉 = 0 , 〈(dW (t))2〉 = dt .

The Wiener increment dW can be modeled as a random walk.
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Only noise : Sξ → ∞ =⇒ P(x) = 0.5 .

It is instructive to convert the stochastic evolution equation from the
differential Stratonovich form to the Itô form that specifies forward
evolutionary increments:
dρ00 = 2g ρ00ρ11(ρ00 − ρ11)(1− gSξ)dt + 2g

√

Sξ ρ00ρ11 dW ,
〈dW (t)〉 = 0 , 〈(dW (t))2〉 = dt .

The Wiener increment dW can be modeled as a random walk.

The first term produces drift in the evolution, while the second gives rise
to diffusion. The evolution with no drift, i.e. the pure Wiener process with
gSξ = 1, is rather special:

〈dρ00〉 = 0 ⇔ Born rule is a constant of evolution.

A. Patel (CHEP, IISc) Weak Measurements and Born Rule
19 October 2016, ICQF16, NIT, Patna 17

/ 32



Single Qubit Measurement (contd.)

In absence of drift, starting at x , one moves to x + ǫ with some
probability, moves to x − ǫ with the same probability, and stays put
otherwise. Balancing the probabilities,

P(x) = α(P(x + ǫ) + P(x − ǫ)) + (1− 2α)P(x) .
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probability, moves to x − ǫ with the same probability, and stays put
otherwise. Balancing the probabilities,

P(x) = α(P(x + ǫ) + P(x − ǫ)) + (1− 2α)P(x) .

The general solution, independent of the choice of α and ǫ,
is that P(x) is a linear function of x , which is the Born rule:

gSξ = 1, P(0) = 0,P(1) = 1 =⇒ P(x) = x

Specific choices of g , α, ǫ only alter the rate of evolution, and not the asymptotic outcome.
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In absence of drift, starting at x , one moves to x + ǫ with some
probability, moves to x − ǫ with the same probability, and stays put
otherwise. Balancing the probabilities,

P(x) = α(P(x + ǫ) + P(x − ǫ)) + (1− 2α)P(x) .

The general solution, independent of the choice of α and ǫ,
is that P(x) is a linear function of x , which is the Born rule:

gSξ = 1, P(0) = 0,P(1) = 1 =⇒ P(x) = x

Specific choices of g , α, ǫ only alter the rate of evolution, and not the asymptotic outcome.

Numerical tests were performed for different values of gSξ.
ρ00(t+τ)
ρ11(t+τ)

= ρ00(t)
ρ11(t)

e2gτw , w = 1
τ

∫ t+τ
t

(w0 − w1)dt .

With gτ ≪ 1, w was generated as a Gaussian random number with mean
ρ00(t)− ρ11(t) and variance Sξ/τ .
The data clearly show the special status of gSξ = 1.
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Probability that the initial qubit state ρ00 = x evolves to the measurement eigenstate ρ00 = 1,
for different values of the measurement noise. The gSξ values label the curves.
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Ensemble Evolution Dynamics

During measurement, the probability distribution p(ρ00, t) of the set of
quantum trajectories evolves according to the Fokker-Planck equation
(with gSξ = 1):

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

.
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(with gSξ = 1):

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

.

Its exact solution corresponding to initial p(ρ00, 0) = δ(x) has two
non-interfering components with areas x and 1− x , monotonically
travelling to the boundaries at ρ00 = 1 and 0 respectively.
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(with gSξ = 1):

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

.

Its exact solution corresponding to initial p(ρ00, 0) = δ(x) has two
non-interfering components with areas x and 1− x , monotonically
travelling to the boundaries at ρ00 = 1 and 0 respectively.

Let tanh(z) = 2ρ00 − 1 = ρ00 − ρ11 map ρ00 ∈ [0, 1] to z ∈ (−∞,∞).
dz
dt

= g tanh(z) +
√
g ξ , dz = g tanh(z) dt +

√
g dW ,

∂p(z,t)
∂t = −g ∂

∂z (tanh(z) p(z , t)) +
g
2
∂2

∂2z
p(z , t) .

Then the two peaks are diffusing Gaussians, with their centres at
z±(t) = tanh−1(2x − 1)± gt and common variance gt.
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∂2ρ00

(
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)

.

Its exact solution corresponding to initial p(ρ00, 0) = δ(x) has two
non-interfering components with areas x and 1− x , monotonically
travelling to the boundaries at ρ00 = 1 and 0 respectively.

Let tanh(z) = 2ρ00 − 1 = ρ00 − ρ11 map ρ00 ∈ [0, 1] to z ∈ (−∞,∞).
dz
dt

= g tanh(z) +
√
g ξ , dz = g tanh(z) dt +

√
g dW ,

∂p(z,t)
∂t = −g ∂

∂z (tanh(z) p(z , t)) +
g
2
∂2

∂2z
p(z , t) .

Then the two peaks are diffusing Gaussians, with their centres at
z±(t) = tanh−1(2x − 1)± gt and common variance gt.

The peaks reach the boundaries only asymptotically, as t → ∞.
The precise nature of this distribution is experimentally testable.
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Distribution of the quantum measurement trajectories for quantum diffusion evolution of a qubit
state. The initial state is ρ00(τ = 0) = 0.6, and the curves are labeled by the values of the
evolution parameter τ ≡

∫ t

0 g(t)dt. The narrow initial distribution splits into two non-interfering
components that converge to the measurement eigenstates at ρ00 = 1, 0 as τ → ∞.
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Observed quantum trajectories for weak Z-measurement of a superconducting qubit.
The initial state is polarised along the X-axis. The top panels show the measured voltage
distribution as a function of time, together with a few individual contributions.
The lower panels display quantum trajectories obtained from the measured signal
(dotted lines), and those reconstructed using tomography (solid lines).

Murch et al. (2013)
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Ensemble Evolution Dynamics (contd.)

The evolving probability distribution is:

p(z , t) = 1√
2πgt

(

x exp
[

− (z−z+)2

2gt

]

+ (1− x) exp
[

− (z−z−)2

2gt

]

)

.

Upon taking the ensemble average,
∫∞
∞ tanh(z(t)) p(z , t) dz = 2x − 1 ,
∫∞
∞ sech(z(t)) p(z , t) dz = e−gt/2sech(z(0)) .
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Ensemble Evolution Dynamics (contd.)

The evolving probability distribution is:

p(z , t) = 1√
2πgt

(

x exp
[

− (z−z+)2

2gt

]

+ (1− x) exp
[

− (z−z−)2

2gt

]

)

.

Upon taking the ensemble average,
∫∞
∞ tanh(z(t)) p(z , t) dz = 2x − 1 ,
∫∞
∞ sech(z(t)) p(z , t) dz = e−gt/2sech(z(0)) .

The resultant expectation value of the density matrix is:

ρ(0) =

(

x ρ01(0)
ρ10(0) 1− x

)

=⇒ 〈ρ(t)〉 =
(

x e−gt/2ρ01(0)

e−gt/2ρ10(0) 1− x

)

.

Remember that all expectation values are linear in the density matrix: 〈O〉 = Tr(ρO).
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Ensemble Evolution Dynamics (contd.)

The evolving probability distribution is:
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x exp
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− (z−z+)2
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]

+ (1− x) exp
[

− (z−z−)2

2gt

]

)

.

Upon taking the ensemble average,
∫∞
∞ tanh(z(t)) p(z , t) dz = 2x − 1 ,
∫∞
∞ sech(z(t)) p(z , t) dz = e−gt/2sech(z(0)) .

The resultant expectation value of the density matrix is:

ρ(0) =

(

x ρ01(0)
ρ10(0) 1− x

)

=⇒ 〈ρ(t)〉 =
(

x e−gt/2ρ01(0)

e−gt/2ρ10(0) 1− x

)

.

Remember that all expectation values are linear in the density matrix: 〈O〉 = Tr(ρO).

It is identical to the solution of the Lindblad master equation for the same
system, with the single decoherence operator Lµ =

√
γσ3, γ = g/4:

d
dt
ρ = γ(σ3ρσ3 − ρ) .

The details of averaging differ: Here the off-diagonal elements are driven to zero, without any
change in phase, by the dynamics of the diagonal elements. In decoherence, the off-diagonal
elements are driven to zero, by the fluctuating scattering phases.
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Larger Quantum Systems

Preceding results are valid for binary orthogonal measurements on any
quantum system, with the replacement ρii → Tr(ρPi ).
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quantum system, with the replacement ρii → Tr(ρPi ).

Projection operators for non-binary orthogonal measurements can be
decomposed as a product of mutually commnuting binary projection
operators. Each binary measurement would have its own stochastic noise.
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Preceding results are valid for binary orthogonal measurements on any
quantum system, with the replacement ρii → Tr(ρPi ).

Projection operators for non-binary orthogonal measurements can be
decomposed as a product of mutually commnuting binary projection
operators. Each binary measurement would have its own stochastic noise.

Another option for n-dimensional quantum measurements is to use the
orthonormal set of weights in the convention of SU(n) Cartan generators
(k = 1, . . . , n − 1):

∑k−1
i=0 wi − kwk =

∑k−1
i=0 ρii − kρkk +

√

k(k+1)Sξ
2 ξk ,

where ξk are independent white noise terms.
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Larger Quantum Systems

Preceding results are valid for binary orthogonal measurements on any
quantum system, with the replacement ρii → Tr(ρPi ).

Projection operators for non-binary orthogonal measurements can be
decomposed as a product of mutually commnuting binary projection
operators. Each binary measurement would have its own stochastic noise.

Another option for n-dimensional quantum measurements is to use the
orthonormal set of weights in the convention of SU(n) Cartan generators
(k = 1, . . . , n − 1):

∑k−1
i=0 wi − kwk =

∑k−1
i=0 ρii − kρkk +

√

k(k+1)Sξ
2 ξk ,

where ξk are independent white noise terms.

The trajectory weights wi depend only on the measured degrees of
freedom, and not on the unobserved environmental degrees of freedom.

The condition for the evolution to be a pure Wiener process, and hence
satisfy the Born rule, remains gSξ = 1.
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Parametric Freedom

With the Born rule as a constant of evolution, the formal “measurement
duration” can be made finite by making g time-dependent, and replacing
gt by

∫ t

0 g(t)dt. (Detectors generically have nonlinear amplifiers.)
For example, with g(t) = 1/(1− t2) the measurement interval becomes t ∈ [0, 1].
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With the Born rule as a constant of evolution, the formal “measurement
duration” can be made finite by making g time-dependent, and replacing
gt by

∫ t

0 g(t)dt. (Detectors generically have nonlinear amplifiers.)
For example, with g(t) = 1/(1− t2) the measurement interval becomes t ∈ [0, 1].

The white noise distribution remains unspecified beyond the mean and the
variance. Appropriate choice can be made.
Gaussian noise is generic as per the central limit theorem.

P(dW ) = 1√
2π dt

exp(−(dW )2/(2 dt)) .

Z2-noise is convenient for numerical simulations.
dW = ±

√
dt with equal probability.
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With the Born rule as a constant of evolution, the formal “measurement
duration” can be made finite by making g time-dependent, and replacing
gt by

∫ t

0 g(t)dt. (Detectors generically have nonlinear amplifiers.)
For example, with g(t) = 1/(1− t2) the measurement interval becomes t ∈ [0, 1].

The white noise distribution remains unspecified beyond the mean and the
variance. Appropriate choice can be made.
Gaussian noise is generic as per the central limit theorem.

P(dW ) = 1√
2π dt

exp(−(dW )2/(2 dt)) .

Z2-noise is convenient for numerical simulations.
dW = ±

√
dt with equal probability.

The nonlinear stochastic evolution, after averaging over noise, becomes a
linear evolution described by a completely positive trace-preserving map.
It can be written in a Kraus decomposed form in several ways.
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Notable Features

• Individual quantum trajectories evolve unitarily, even in presence of
noise. Mixed states arise when multiple trajectories with different noise
histories are combined.
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• The trajectory weights wi are real, but are not restricted to [0, 1].
They cannot be interpreted as probabilities.
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histories are combined.

• The trajectory weights wi are real, but are not restricted to [0, 1].
They cannot be interpreted as probabilities.

• Each noise history wi (t) can be associated with an individual
experimental run, and can be also be viewed as one of the many worlds
in the ensemble of the universe.
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Notable Features

• Individual quantum trajectories evolve unitarily, even in presence of
noise. Mixed states arise when multiple trajectories with different noise
histories are combined.
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They cannot be interpreted as probabilities.

• Each noise history wi (t) can be associated with an individual
experimental run, and can be also be viewed as one of the many worlds
in the ensemble of the universe.

• When the Born rule is satisfied, free reparametrisation of the
“measurement time” is allowed, but no other freedom. This choice governs
the collapse time scale, and is fully local for each system-apparatus pair.
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They cannot be interpreted as probabilities.

• Each noise history wi (t) can be associated with an individual
experimental run, and can be also be viewed as one of the many worlds
in the ensemble of the universe.

• When the Born rule is satisfied, free reparametrisation of the
“measurement time” is allowed, but no other freedom. This choice governs
the collapse time scale, and is fully local for each system-apparatus pair.

• Measurement outcomes are independent of ρi 6=j , and so are unaffected
by decoherence. A different noise can be added to the phases of ρi 6=j

without spoiling the described evolution of ρii . The Born rule imposes
no constraint on that off-diagonal noise.
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Quantum Jump: Single Qubit Measurement

We can construct a binary measurement scenario, where one eigenstate is
reached by continuous geodesic evolution, while the other eigenstate is
reached by sudden, infrequent but large jumps.

With trajectory weights wi = δi0, and shot noise dN ∈ {0, 1}, we have
dρ = g [ρP0 + P0ρ− 2ρTr(P0ρ)]dt + (P1 − ρ)dN .
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With trajectory weights wi = δi0, and shot noise dN ∈ {0, 1}, we have
dρ = g [ρP0 + P0ρ− 2ρTr(P0ρ)]dt + (P1 − ρ)dN .

For a single qubit, the evolution becomes
dρ00 = 2g ρ00ρ11dt − ρ00dN = −dρ11 ,
dρ01 = g ρ01(ρ11 − ρ00)dt − ρ01dN .
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dρ00 = 2g ρ00ρ11dt − ρ00dN = −dρ11 ,
dρ01 = g ρ01(ρ11 − ρ00)dt − ρ01dN .

The Born rule constrains how often the jumps occur:
〈dρ00〉 = 0 =⇒ 〈dN〉 = 2g ρ11dt .
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We can construct a binary measurement scenario, where one eigenstate is
reached by continuous geodesic evolution, while the other eigenstate is
reached by sudden, infrequent but large jumps.

With trajectory weights wi = δi0, and shot noise dN ∈ {0, 1}, we have
dρ = g [ρP0 + P0ρ− 2ρTr(P0ρ)]dt + (P1 − ρ)dN .

For a single qubit, the evolution becomes
dρ00 = 2g ρ00ρ11dt − ρ00dN = −dρ11 ,
dρ01 = g ρ01(ρ11 − ρ00)dt − ρ01dN .

The Born rule constrains how often the jumps occur:
〈dρ00〉 = 0 =⇒ 〈dN〉 = 2g ρ11dt .

For initial p(ρ00, 0) = δ(x), this biased random walk has the evolution:
p(ρ00, t) = (x + (1− x)e−2gt) δ( x

x+(1−x)e−2gt ) + (1− x)(1− e−2gt)δ(0).

Both the components remain local. The one moving to ρ00 = 1 steadily
reduces in magnitude, while the other fixed at ρ00 = 0 grows.
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Properties of the quantum measurement trajectories for quantum jump evolution of a qubit
state. The initial state is ρ00(τ = 0) = 0.6, and the evolution parameter is τ ≡

∫ t

0 g(t)dt.
The initial distribution splits into a monotonically moving component a1(τ)δ(x(τ)) and a
stationary component a0(τ)δ(0), which respectively travel to the measurement eigenstates
ρ00 = 1 and ρ00 = 0 as τ → ∞.
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Ensemble Evolution Dynamics

Upon taking the ensemble average over the noise,

ρ(0) =

(

x ρ01(0)
ρ10(0) 1− x

)

=⇒ 〈ρ(t)〉 =
(

x e−gtρ01(0)
e−gtρ10(0) 1− x

)

.

This is again the solution of the Lindblad master equation for the same
system, with the single decoherence operator Lµ =

√
γ(P0 −P1), γ = g/2.
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Origin of Noise

The quadratically nonlinear quantum measurement equation for
state collapse supplements the Schrödinger evolution:

dρ =
∑

i wi g [ρPi + Piρ− 2ρTr(ρPi )] dt + noise .
The underlying dynamics is the system-apparatus measurement
interaction, and the nature of the noise depends on it.

What mechanism can simultaneously produce attraction towards the
measurement eigenstates (geodesic evolution) and irreducible noise
stochastic fluctuations), with precisely related magnitudes?

Such features appear in variational principles and the path integral framework.
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The quadratically nonlinear quantum measurement equation for
state collapse supplements the Schrödinger evolution:

dρ =
∑

i wi g [ρPi + Piρ− 2ρTr(ρPi )] dt + noise .
The underlying dynamics is the system-apparatus measurement
interaction, and the nature of the noise depends on it.

What mechanism can simultaneously produce attraction towards the
measurement eigenstates (geodesic evolution) and irreducible noise
stochastic fluctuations), with precisely related magnitudes?

Such features appear in variational principles and the path integral framework.

A model for the measurement apparatus is needed to understand where
the noise comes from. The observed signal is amplified, usually nonlinearly,
from the quantum to the classical regime.
Coherent states that continuously interpolate between quantum and
classical regimes are a convenient choice for the apparatus pointer states.

|α〉 ≡ eαa
†−α∗a|0〉 = e−|α|2/2∑∞

n=0
αn√
n!
|n〉 .
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Work in Progress

Coherent states are the minimum uncertainty states in the Fock space.
The von Neumann interaction can amplify α and separate the pointer
states. For measurement of a qubit using the electromagnetic field in a
cavity, the von Neumann interaction gives:

Hint = ig |1〉〈1| ⊗ (a† − a) ,
|0〉S |0〉A −→ |0〉S |0〉A , |1〉S |0〉A −→ |1〉S |α = gt〉A .
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Hint = ig |1〉〈1| ⊗ (a† − a) ,
|0〉S |0〉A −→ |0〉S |0〉A , |1〉S |0〉A −→ |1〉S |α = gt〉A .

Amplification produces quantum noise when the extracted information is
not allowed to return (e.g. spontaneous vs. stimulated emission).
Does chaotic delocalisation of the entangled degree of freedom inside the
apparatus give rise to irreversibility? (Generally apparatus >> system.)
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Amplification produces quantum noise when the extracted information is
not allowed to return (e.g. spontaneous vs. stimulated emission).
Does chaotic delocalisation of the entangled degree of freedom inside the
apparatus give rise to irreversibility? (Generally apparatus >> system.)

The measurement problem, i.e. the location of the “Heisenberg Cut”
separating the quantum and the classical behaviour, is thus shifted
higher up in the dynamics of the apparatus-dependent amplification.
Are there amplifiers that would bypass or modify the noise under some unusual conditions?
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The von Neumann interaction can amplify α and separate the pointer
states. For measurement of a qubit using the electromagnetic field in a
cavity, the von Neumann interaction gives:

Hint = ig |1〉〈1| ⊗ (a† − a) ,
|0〉S |0〉A −→ |0〉S |0〉A , |1〉S |0〉A −→ |1〉S |α = gt〉A .

Amplification produces quantum noise when the extracted information is
not allowed to return (e.g. spontaneous vs. stimulated emission).
Does chaotic delocalisation of the entangled degree of freedom inside the
apparatus give rise to irreversibility? (Generally apparatus >> system.)

The measurement problem, i.e. the location of the “Heisenberg Cut”
separating the quantum and the classical behaviour, is thus shifted
higher up in the dynamics of the apparatus-dependent amplification.
Are there amplifiers that would bypass or modify the noise under some unusual conditions?

Einstein strikes back!
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