
PH 203: Quantum Mechanics I

1. Spreading of a wave packet: For a normalised wave function ψ(x, t) centered at the point
x0, we define the width ∆x(t) by the formula

(∆x(t))2 =
∫ ∞

−∞
dx (x− x0)

2 |ψ(x, t)|2 .

(i) Suppose that at t = 0, we have a Gaussian wave function of the form

ψ(x, 0) =
e−(x−x0)2/4σ2

(2π)1/4σ1/2
.

Use the free particle Schrödinger equation to see how this evolves in time, and find an
expression for the width ∆x(t).

Hint: Do a Fourier transform to momentum space and use the result that
∫∞
−∞ dxe−a(x−b)2 =

√

π/a, where a can be a complex number whose real part is not negative
and b can be any complex number.

(ii) Estimate the time required for the wave packet of an electron of mass 9× 10−31Kg to
double its width starting from ∆x(0) = 1 Å.

2. Consider a normalised wave function at time t = 0 given by

ψ(x, 0) =
e−(x−a)2/4σ2+ibx/h̄

(2π)1/4σ1/2
,

where a and b are real constants. Use the free particle Schrödinger equation to see how
this evolves in time, and find expressions for the expectation values < x >, < p >, the
uncertainties ∆x, ∆p, and the product ∆x∆p as functions of t.

3. Quantum mechanics on a lattice: Assume that a particle can only live on the sites of a
one-dimensional lattice where the site positions are given by xn = na, a being the lattice
spacing. Suppose that the Schrödinger equation for the particle is

ih̄
∂ψ(xn, t)

∂t
= − h̄2

2m

[ ψ(xn+1, t) + ψ(xn−1, t)− 2ψ(xn, t)

a2

]

.

(i) Find all the energy levels and wave functions. (You don’t have to normalise the wave
functions).

Hint: Assume wave functions of the form ψ(xn, t) = e(i/h̄)(pxn−Ept), and find the energy
Ep as a function of the momentum p. (We restrict p to lie in the range [−πh̄/a, πh̄/a]).
(ii) Show that you recover the usual continuum result for Ep as a function of p if |p| <<
h̄/a.
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4. For a particle moving on a circle of circumference L, suppose that the Hamiltonian is
H = (p̂− a)2/2m, where p̂ = −ih̄∂/∂x and a is real.

(i) Find the energy levels and wave functions.

(ii) Sketch the ground state energy as a function of a as a goes from −∞ to ∞.

5. Consider an electron with charge q moving on a circle (of circumference L) which encloses
a magnetic flux Φ. The Hamiltonian is given by H = (p̂ − a)2/2m, where a = qΦ/(cL)
and c is the speed of light.

(i) Find all the energy levels and the corresponding wave functions.

(ii) Sketch the energy of the ground state (namely, the minimum energy eigenvalue of H)
as a function of a as a goes from −∞ to ∞.

(iii) In the ground state, sketch the expectation value of the current < qv̂ > as a function
of a, where we define the velocity operator of the electron as

v̂ =
1

m
(p̂− a).

(Note: This expectation value is time-independent, and is therefore called a persistent
current if it is non-zero).

6. A particle is in a one-dimensional box extending from x = 0 to x = L. (V (x) is zero
inside the box and infinity outside the box). We are given a wave function at time t = 0
of the form

ψ(x, 0) = δ(x− L

2
) .

Find an expression for ψ(x, t) at later times, given that ψ evolves according to the
Schrödinger equation. (ψ(x, 0) is not normalisable, but don’t worry about that). Show
that |ψ(x, t)|2 repeats periodically in time with a time period given by T = mL2/(2πh̄).

7. A particle is in a box of length L with a δ-function potential in the middle, namely,

V (x) = c δ(x) if − L/2 < x < L/2,

= ∞ if x < − L/2 or x > L/2.

We will assume that c > 0.

(i) What does the ground state wave function look like?

(ii) Derive an equation which relates the ground state energy E0 to the parameters c and
L. (E0 cannot be found analytically from this equation, but it can be found numerically
if required).

(iii) What is the value of E0 in the limit c→ ∞? Can you explain this result by a simple
physical argument?
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8. For a particle moving in the potential V (x) = c δ(x− a), find the scattering matrix

S =

(

rp t′p
tp r′p

)

.

The four amplitudes appearing above are defined as in class: for a wave incident from
x = −∞, ψ(x) = eipx/h̄ + rpe

−ipx/h̄ for x < a and tpe
ipx/h̄ for x > a, while for a wave

incident from x = +∞, ψ(x) = e−ipx/h̄ + r′pe
ipx/h̄ for x > a and t′pe

−ipx/h̄ for x < a. Verify
that S†S = I.

9. Consider the periodic δ-function potential

V (x) =
∞
∑

n=−∞

c δ(x− na) .

(i) Sketch the ground state wave function for c > 0 and for c < 0.

(ii) Derive equations which relate the ground state energy E0 to c for c > 0 and for c < 0.
(E0 cannot be found analytically from these equations).

(iii) Find the ground state energy in the limit c→ +∞.

(iv) Evaluate E0 numerically (in eV) if c = −1 eV-Å, a = 2 Å, and m = 9× 10−31Kg.

(Remember: h̄ = 6.58× 10−16 eV-sec).

10. For the case of two attractive δ-function potentials, namely,

V (x) = c δ(x+
a

2
) + c δ(x− a

2
)

with c < 0, find the energy splitting ∆E between the two bound states for a large
separation a. You should express ∆E in terms of a and the bound state E0 of a single
δ-function potential.

11. A particle moving in a one-dimensional potential V (x) has a bound state wave function
of the form

ψ(x) =
c

cosh (x/a)
,

where a is some distance scale, and c is a constant.

(i) Find the potential V (x) (assuming that V (x) → 0 as x→ ±∞), and the bound state
energy E.

(ii) Find the value of c for which ψ is normalised to unity.

12. A particle is moving in one dimension in the presence of the potential
V (x) = −h̄2/(ma2 cosh2(x/a)), where a > 0.

(i) Show that the wave function

ψ = (1 +
i

ka
tanh

x

a
) eikx ,
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satisfies the time-independent Schrödinger equation with energy Ek = h̄2k2/(2m).

(ii) Show that this wave function can be multiplied by a suitable constant so that it
takes the form eikx as x → −∞ and tke

ikx as x → ∞. Hence find the expression for the
transmission amplitude tk. (Since there is no term like rke

−ikx as x→ −∞, this potential
is reflectionless for any energy Ek).

(iii) Show that tk diverges when k is equal to a particular positive imaginary number, and
use this to find the bound state energy and wave function for this potential.

13. Consider a particle moving in the presence of a potential V (x) which is localised in some
region. For a wave incident from the left (i.e., from x = −∞) with momentum p, let
tp = |tp|eiφp be the transmission amplitude; φp is called the transmission phase shift.
Now consider a wave packet incident from the left which is a superposition of many plane
waves centered around p = p0.

(i) Show that the transmitted wave packet is centered around the point

x = v0



t − h̄

v0

(

dφp

dp

)

p=p0



 ,

where v0 = p0/m. The quantity (h̄/v0)(dφp/dp)p=p0 is called the time delay.

(ii) Calculate the time delay when the potential is given by V (x) = c δ(x) and the
momentum p0 >> m|c|/h̄. (You may use the expression for tp that was derived in class
for a δ-function potential).

(iii) Can you give a physical argument to explain the sign of the time delay? (Hint:
classically, do you expect the particle to slow down or speed up at x = 0 if c > 0 ?)

14. Coherent states:

(i) For the simple harmonic oscillator with the time-independent wave functions ψn(x)
satisfying

Hψn(x) = h̄ω (n+
1

2
) ψn(x) ,

consider the superposition

ψ(x, 0) =
∞
∑

n=0

cn ψn(x)

at time t = 0. How should the coefficients cn be chosen so that ψ(x, 0) is an eigenstate
of the lowering operator a, namely, aψ(x, 0) = αψ(x, 0), where the eigenvalue α is some
given complex number?

Eigenstates of a are called coherent states.

(ii) Using the expression for a, find the explicit form of the wave function ψ(x, 0). Make
sure that ψ(x, 0) is correctly normalised.
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(iii) Now let ψ evolve in time according to the Schrödinger equation ih̄∂ψ(x, t)/∂t =
Hψ(x, t). Show that ψ(x, t) remains a coherent state at all times, except that the eigen-
value of a changes with time; how does it change?

(iv) The mean position < x > and uncertainty ∆x of the wave function ψ(x, t) are defined
as

< x > =
∫ ∞

−∞
dx x |ψ|2 ,

(∆x)2 =
∫ ∞

−∞
dx (x − < x >)2 |ψ|2 ,

assuming that ψ(x, t) is normalised. Show that < x > varies with time according to the
classical equation of motion, while ∆x does not change at all.

(v) Calculate the mean momentum < p > and uncertainty ∆p, and show that they have
similar properties as < x > and ∆x in part (iv). How much is ∆x∆p equal to?

All these are important properties of coherent states.

15. Squeezed states:

Recall that for the simple harmonic oscillator, the uncertainties ∆x and ∆p of the ground

state wave function (and all coherent states) are equal to the ‘natural’ values
√

h̄/2mω

and
√

h̄mω/2 respectively.

(i) Now consider an eigenstate of the operator Q = µa + νa† with eigenvalue α, where
µ, ν and α are three complex numbers satisfying |µ|2 − |ν|2 = 1. For this state, calculate
the uncertainties ∆x and ∆p as functions of µ, ν and α. Is ∆x∆p ≥ h̄/2?

This is called a squeezed state if either ∆x or ∆p is less than its ‘natural’ value given
above.

(ii) Now let this state evolve in time according to the Schrödinger equation. Show that
it continues to be an eigenstate of the operator Q(t) = µ(t)a + ν(t)a† with the same

eigenvalue α, where µ(t) and ν(t) are some functions of time that you have to determine.

(iii) From this, find ∆x and ∆p as functions of time, and show that they periodically
get squeezed and ‘unsqueezed’. What is the time period of maximum squeezing of ∆x?
Sketch ∆x, ∆p and ∆x∆p as functions of time.

16. Consider the eigenstates ψn(x) of the one-dimensional simple harmonic oscillator Hamil-
tonian. (We assume these are normalised so that

∫∞
−∞ dx ψ⋆

n(x)ψn(x) = 1). Use the
raising and lowering operators to find the expectation values

< x3 >n =
∫ ∞

−∞
dx ψ⋆

n(x) x
3 ψn(x)

and < x4 >n =
∫ ∞

−∞
dx ψ⋆

n(x) x
4 ψn(x)

as functions of n.
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17. A particle is moving in two dimensions with the Hamiltonian

H =
p2x + p2y

2m
+

1

2
mω2 (x2 + y2 + 2λxy) .

(i) Find all the energy levels and the corresponding wave functions for −1 < λ < 1.

(ii) What are the energy levels and corresponding wave functions if λ = ±1 ?

18. A triatomic molecule is moving in one dimension with the Hamiltonian

H =
p21 + p22 + p23

2m
+

1

2
mω2 [(x2 − x1)

2 + (x2 − x3)
2] ,

where xn denotes the displacement of the nth particle from its equilibrium position.

Find all the energy levels and write down the corresponding wave functions.

19. An electron with charge q is placed in a three-dimensional isotropic harmonic oscillator
potential so that

H =
~p2

2m
+

1

2
mω2~r2 .

Now we apply a uniform electric field with magnitude A along the ẑ-direction.

(i) Find all the energy levels and their degeneracies. Does the answer depend on the
direction of the electric field? Give a reason for your answer.

(ii) If E0 is the ground state energy in the presence of the electric field, the electric
dipole moment (in the ẑ-direction) is defined as −dE0/dA and the electric polarisability
is defined as −d2E0/dA

2. Calculate these quantities in this problem.

20. A particle with mass m and charge q is placed in a one-dimensional simple harmonic
potential with frequency ω and a uniform electric field E which is applied along the + x̂
direction. Find the exact ground state energy and wave function. Hence find the induced
dipole moment and explain its value using the form of the wave function.

21. Consider N particles arranged around a circle (of circumference L) with the Hamiltonian

H =
N
∑

n=1

[ p2n
2m

+
1

2
mω2 (xn+1 − xn)

2
]

,

where xN+1 = x1. (Here xn denotes the displacement of the nth particle from its equilib-
rium position). Find all the energy levels.

22. A particle is in a potential

V (x) =
1

2
mω2x2 if x > 0,

= ∞ if x < 0.
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(i) Use a simple argument to find all the energy levels.

(ii) Show that for any initial state ψ(x, 0) which is given by an arbitrary superposition of
the eigenstates of the Hamiltonian, the probability density |ψ(x, t)|2 will repeat in time
with a period π/ω.

23. Suppose that a particle moves in a one-dimensional potential of the form

V (x) =
1

2
mω2x2 for x > 0 ,

= ∞ for x < 0 .

Find all the energy levels and corresponding wave functions.

24. Virial theorem in quantum mechanics: For a one-dimensional problem described by

Ĥ =
p̂2

2m
+ a|x̂|n ,

(where a, n > 0), the virial theorem states that in any eigenstate of Ĥ, the expectation
values satisfy the relations

<
p̂2

2m
> =

n

n+ 2
< Ĥ > and < a|x̂|n > =

2

n + 2
< Ĥ > .

To prove this theorem, consider the Hermitian operator

D̂ =
x̂p̂+ p̂x̂

2h̄
.

(i) Calculate the commutator [D̂, Ĥ]. (We have written the potential as a|x̂|n instead of
ax̂n to avoid any difficulties if n is not an integer. But when you are calculating [D̂, Ĥ ],
you may take a|x̂|n to be equivalent to ax̂n).

(ii) Now calculate the expectation value of [D̂, Ĥ] in an eigenstate of Ĥ and use the result
to prove the virial theorem.

(iii) How does the unitary operator U = eiθD̂ transform x̂ and p̂, namely, what are Ux̂U−1

and Up̂U−1 equal to? Show that for θ = iπ, the operator U does the parity transformation,
x→ −x and p→ −p.
[D̂ is sometimes called the scaling operator].

25. For a Hermitian operator O, show that the expectation values < O > and < O2 > in
any normalised state |ψ > satisfy < O2 > ≥ < O >2. Prove that equality holds if and
only if |ψ > is an eigenstate of O.

26. For the one-dimensional Hamiltonian

H =
p2

2m
+ λx4 ,
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where λ is positive, use the position-momentum uncertainty relation to show that the
ground state energy satisfies

E0 ≥ 3

4

( λh̄4

4m2

)1/3
.

[Use the inequality, which follows from the previous problem, that
< x4 > ≥ < x2 >2 in any state].

27. Let A,B and C be three Hermitian operators such that [A,B] = iC. If |ψ > is a
normalised eigenstate of C with eigenvalue λ, show that the uncertainties ∆A and ∆B
in the state |ψ > must satisfy ∆A∆B ≥ |λ|/2.
[We define ∆A as the square root of the expectation value of (A− < A >)2 in the state
|ψ >, where < A > is the expectation value of A in |ψ >. ∆B is defined in a similar
way].

28. Find all the 2 × 2 Hermitian matrices A whose square is equal to the identity matrix I.
For all such matrices, calculate eiθA, where θ is a real number, and show that the answer
can be written in terms of the matrices I and A.

29. Suppose that there are four operators Lz, Ax, Ay and Az satisfying [Lz, Ax] = ih̄Ay,
[Lz, Ay] = −ih̄Ax, and [Lz, Az] = 0. Show that the operator U = eiθLz/h̄ satisfies

UAxU
−1 = Ax cos θ − Ay sin θ ,

UAyU
−1 = Ay cos θ + Ax sin θ ,

UAzU
−1 = Az .

30. Let Li denote the three angular momentum operators; i may denote x, y or z. We say that
an operator O transforms like a scalar under rotations if [Li,O] = 0 for all i. Similarly,
three operators Ai = (Ax, Ay, Az) are said to transform like a vector under rotations if

[Li, Aj ] = ih̄
∑

k=x,y,z

ǫijk Ak .

(i) If O and ~A transform like a scalar and vector respectively, show that O ~A transforms

like a vector. If ~A and ~B transform like vectors, show that ~A · ~B transforms like a scalar,
and ~A× ~B transforms like a vector. (All this is true whether or not O, ~A and ~B commute
with each other).

(ii) Verify that ~r and ~p transform like vectors.

31. Consider the matrices

Tz =







1 0 0
0 0 0
0 0 −1





 , Tx =
1√
2







0 1 0
1 0 1
0 1 0





 , Ty =
1√
2







0 −i 0
i 0 −i
0 i 0





 ,
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and

T ′
z =







0 −i 0
i 0 0
0 0 0





 , T ′
x =







0 0 0
0 0 −i
0 i 0





 , T ′
y =







0 0 i
0 0 0
−i 0 0





 ,

Construct a unitary matrix U such that UTiU
−1 = T ′

i for i = x, y and z.

Hint: If xn are the three normalised eigenvectors of Tz with the eigenvalues λn, and x
′
n

are the corresponding eigenvectors of T ′
z with the same eigenvalues, then U =

∑

n x
′
nx

†
n

satisfies UTzU
−1 = T ′

z. Note that the vectors xn and x′n have some phase ambiguities;
these ambiguities can be fixed by explicitly checking that the same matrix U also satisfies
UTxU

−1 = T ′
x and UTyU

−1 = T ′
y.

32. The Hamiltonian governing the rotational motion of a system with angular momentum
l = 1 is given by

H = aL2
x + bL2

y + cL2
z .

Find all the energy levels.

33. Consider an eigenstate of ~L2 and Lz denoted by |l, m >. Let A = n̂ · ~L denote an
operator, where n̂ is a unit vector; we can parametrise it in terms of two angles as
(nx, ny, nz) = (sinα cos β, sinα sin β, cosα). In terms of (α, β), calculate the expectation
value < A > and the uncertainty ∆A in the state |l, m >.

(Note: The angles α and β are fixed numbers, and the operators Lx, Ly, Lz do not act on
them).

34. Consider a particle with angular momentum ~J with ~J2 = j(j+1)h̄2. Let n̂ = (sinα cos β, sinα sin β, cos
be a unit vector. Verify that the state |ψ > given by

|ψ > =
j
∑

m=−j

ei(j−m)β
( (2j)!

(j −m)!(j +m)!

)1/2 (

cos
α

2

)j+m (

sin
α

2

)j−m |jz = m >

satisfies n̂ · ~J |ψ >= jh̄|ψ >.
(Note: The angles α and β are fixed numbers, and the operators Jx, Jy, Jz do not act on
them).

35. Consider the angular momentum matrices

Lz = h̄







1 0 0
0 0 0
0 0 −1





 and Lx =
h̄√
2







0 1 0
1 0 1
0 1 0







for a particle with orbital angular momentum l = 1. Find the normalised eigenvectors of
Lx corresponding to the eigenvalues h̄, 0 and −h̄. (The phases of the three eigenvectors
are unimportant; hence you can choose the phases in any way you like).
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Show that the state with eigenvalue Lx = h̄ can be transformed to the state with eigen-
value Lx = −h̄ by rotating around the ẑ axis by an appropriate angle; find this angle.
Show that it is impossible to transform the state with eigenvalue Lx = h̄ to the state with
eigenvalue Lx = 0 by rotating around the ẑ axis by any angle.

36. Find the energy levels and corresponding wave functions of the isotropic simple harmonic
oscillator in three dimensions using polar coordinates (r, θ, φ). (You don’t have to nor-
malise the wave functions).

If the energy levels are written as EN = (N + 3/2)h̄ω, where N = 0, 1, 2, · · ·, what are
the allowed values of the orbital angular momentum l for a given value of N? Using this
information, show that the degeneracy of the energy level EN is given by (N+1)(N+2)/2.

37. Hidden symmetry:

(i) Find the energy levels and degeneracies of the two-dimensional isotropic simple har-
monic oscillator.

(ii) Use the two sets of raising and lowering operators (given in terms of the coordinates
x, y) to construct three operators which commute with the Hamiltonian and also satisfy
the commutations relations of ‘angular momentum’ amongst each other. Show that these
operators can be used to explain the degeneracies in this problem. Which representation
of ‘angular momentum’ describes states with a given energy E?

(iii) Can you write the angular momentum operator Lz in terms of the above operators?

38. (i) A two-dimensional representation of the angular momentum algebra is given by the
three matrices

Jx =
h̄

2

(

0 1
1 0

)

, Jy =
h̄

2

(

0 −i
i 0

)

, and Jz =
h̄

2

(

1 0
0 −1

)

.

Given a unit vector n̂ = (nx, ny, nz), use various properties of the Pauli matrices to find

the rotation matrix R = exp(iαn̂ · ~J/h̄). (This operator rotates by an angle α about the
direction n̂).

What is the value of R for α = 2π?

(ii) A three-dimensional representation of angular momentum is given by

Jx = h̄







0 0 0
0 0 −i
0 i 0





 , Jy = h̄







0 0 i
0 0 0
−i 0 0





 , Jz = h̄







0 −i 0
i 0 0
0 0 0





 .

(These matrices can be written in short as (Ji)jk = −ih̄ǫijk). Calculate the rotation

matrix R = exp(iαn̂ · ~J/h̄).
Hint: By symmetry, the matrix elements Rij can only be a linear combination of the
three matrices δij, ninj and

∑

k ǫijknk, with coefficients which can only be functions of α.
Find the three coefficients by considering the special case n̂ = (0, 0, 1).
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39. Find all the Clebsch-Gordan coefficients when two angular momenta ~J1 and ~J2 are com-
bined to give ~J = ~J1 + ~J2, if j1 = 3/2 and j2 = 1/2, namely, find the inner products
< j, jz|j1 = 3/2, j1z; j2 = 1/2, j2z > for all the possible values of j, jz, j1z and j2z. What

are the eigenvalues of the operator ~J1 · ~J2 in the various possible states |j, jz >?

40. Consider an electron whose spin is initially pointing along the direction n̂, where n̂ =
(sin θ, 0, cos θ) is a unit vector. It is then acted on by a magnetic field of the form
~B = B ẑ. Find the spin wave function of the electron as a function of time, and use that
to calculate the three expectation values < Sx >, < Sy >, and < Sz >.

41. Consider an electron whose spin is pointing in the +ẑ direction at time t = 0. The
Hamiltonian is given by H = µB~σ · ~B when a magnetic field ~B is applied. Suppose that
~B = B(t) x̂ where

B(t) = B0 for 0 ≤ t ≤ T,

= 0 for t > T.

(i) In which direction will the spin point at time t > T ?

(ii) Find the minimum value of B0 such that the spin will point in the −ẑ direction at
time t > T .

42. Consider three s = 1/2 spins coupled to each other by the Hamiltonian

H = − A [~S1 · ~S2 + ~S2 · ~S3 + ~S3 · ~S1] − BSz,

where A and B are some constants, and Sz = S1z + S2z + S3z.

(i) Find all the energy levels and label all the eigenstates using the total spin ~S2 =

(~S1 + ~S2 + ~S3)
2 and Sz. (You don’t have to find the eigenstates of H).

(ii) Let us set B = 0. What is the energy, total spin and degeneracy of the ground state
if (i) A > 0 (called a ferromagnetic system), and (ii) A < 0 (called antiferromagnetic)?

43. Consider three spins each of which has s = 1/2. Find all the eigenvalues and the explicit

forms of the corresponding eigenstates of both the total spin squared ~S2 (where ~S =
~S1 + ~S2 + ~S3) and the total Sz = S1z + S2z + S3z. You have to write the eigenstates
as superpositions of the eight states | ↑↑↑〉, | ↑↑↓〉, · · · , | ↓↓↓〉. Make sure that the
eigenstates are orthonormal.

44. Consider four spin-1/2 objects coupled to each other by the following Hamiltonian

H = −A [~S1 · ~S2 + ~S1 · ~S3 + ~S1 · ~S4 + ~S2 · ~S3 + ~S2 · ~S4 + ~S3 · ~S4].

Show that the total spin component Sz = S1z + S2z + S3z + S4z commutes with H . In
the same way, we can show that total Sx and Sy commute with H , but you don’t have

11



to show this. Now show that the total spin squared, ~S2 = (~S1 + ~S2 + ~S3 + ~S4)
2, also

commutes with H .

For A > 0, it turns out that one of the ground states is given by the state in which all
the four spins have Siz = h̄/2. What is the energy and total spin of this state? Hence
find the degeneracy of the ground state.

45. For the j = 3/2 representation of the angular momentum algebra, find the 4× 4 matrices
for Jx, Jy and Jz using the relations

Jz |j,m > = mh̄ |j,m > ,

J+ |j,m > = h̄
√

j(j + 1)−m(m+ 1) |j,m+ 1 > ,

J− |j,m > = h̄
√

j(j + 1)−m(m− 1) |j,m− 1 > .

Verify explicitly that ~J2 = j(j + 1)h̄2 I.

46. Holstein-Primakoff transformation: There is a striking similarity between the equal spac-
ing of the eigenvalues of Jz (in any particular representation of angular momentum labelled
by an integer or half-integer value of j) and the raising and lowering operators J+ and J−
on the one hand, and the equal spacing of the energy levels of a simple harmonic oscillator
and the raising and lowering operators a† and a on the other hand.

(i) Show that if we define

Jz = h̄ (j − a†a) ,

J+ = h̄ (2j − a†a)1/2 a ,

J− = h̄ a†(2j − a†a)1/2 ,

then they satisfy the angular momentum commutation relations and the relation ~J2 =
j(j+1)h̄2 if [a, a†] = 1. (Do these calculations using only Jz, J+ and J−. You don’t have
to introduce Jx and Jy).

[The square root of an operator is defined as a Taylor expansion, namely,

(2j − a†a)1/2 = (2j)1/2 [ 1 − 1

2

(a†a

2j

)

− 1

8

(a†a

2j

)2 − . . . ] .

However, you do not need to make this expansion in this problem].

(ii) What are the maximum and minimum possibles values of a†a in this representation?

47. Landau levels: Consider a particle with charge q and mass m moving in a uniform mag-
netic field ~B = Bẑ. Let the vector potential be given by Ax = 0, Ay = Bx,
Az = 0. Find all the energy levels and the corresponding wave functions in terms of the
cyclotron frequency ωc = |qB|/mc. Show that each energy level has an infinite degeneracy

if the plane perpendicular to ~B has an infinite area (ignore any degeneracy arising from
motion in the ẑ direction).
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48. Landau levels: Consider an electron with charge −e and mass m moving in two dimen-
sions in the presence of a magnetic field ~B = Bẑ with a vector potential given by Ax = 0
and Ay = Bx. [Ignore the z coordinate in this problem. Also, assume that eB > 0 and
define ωc = eB/(mc)]. Let us define the four operators

a =

√

c

2h̄eB
[px − i (py +

eBx

c
)],

a† =

√

c

2h̄eB
[px + i (py +

eBx

c
)],

b =

√

c

2h̄eB
[(px +

eBy

c
) + ipy],

b† =

√

c

2h̄eB
[(px +

eBy

c
) − ipy].

(i) Calculate the commutators between all possible pairs of these operators.

(ii) Write the Hamiltonian

H =
1

2m
(~p − q

c
~A)2 +

e

mc
~S · ~B

in terms of a, a†, b, b† and σz.

(iii) Use the result in (ii) to find all the energy levels and show that each of these levels
has an infinite degeneracy. (We are assuming that the coordinates x and y go from −∞
to +∞, so that the system has an infinite area).

49. Landau levels:

(i) Consider a spinless particle with charge q and mass m moving in a uniform magnetic

field, say, ~B = Bẑ. Use the ‘symmetric gauge’ ~A = (1/2) ~B×~r and cylindrical coordinates

(r, φ, z). [In these coordinates, the Laplacian is ~∇2 = ∂2/∂r2+(1/r)∂/∂r+(1/r2)∂2/∂φ2].
Find the energy levels in terms of the cyclotron frequency ωc = |qB|/mc. Show that each

energy level has an infinite degeneracy if the plane perpendicular to ~B has an infinite area
(ignore any degeneracy arising from motion in the ẑ direction).

(ii) Let us now concentrate on the ground states. What do the probability densities |ψ|2
look like in the different states? Suppose that the particle is constrained to move inside
a large circular disc in the x− y plane; large means that the area of the disc πR2 >> the
‘Landau area’ 2πh̄c/|qB|. What is the degeneracy of the ground state in terms of these
two areas?

(iii) Finally, assume that the particle is a spin-1/2 electron. Find the energy levels and
degeneracies in that case.

50. Consider a particle with charge q and mass m moving in a uniform magnetic field
~B = Bẑ and a uniform electric field ~E = F x̂. Let the vector potential be given by
Ax = 0, Ay = Bx, Az = 0. (Assume that the particle is moving in the x− y plane
and ignore its motion in the ẑ-direction).
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(i) Find all the energy levels and show that they depend on the momentum in the ŷ-
direction denoted by py.

(ii) Find the group velocity in the ŷ-direction given by vy = ∂E/∂py .

51. Consider a simple model of a one-dimensional ferromagnet, namely, N spin-1/2 objects
placed around a circle with the Hamiltonian

H = − J
N
∑

n=1

~Sn · ~Sn+1 ,

where we assume the periodic boundary condition ~SN+1 ≡ ~S1 and J > 0.

(i) Show that the total Sz =
∑

n Snz and the total spin ~S2 = (
∑

n
~Sn)

2 are good quantum
numbers, namely, they commute with H .

(ii) A ground state of this system is the state |ψ0 > in which all spins point up, namely,

Snz = h̄/2 (denoted by ↑) for all n. What is the total spin S of |ψ0 >, i.e., ~S
2|ψ0 >=

S(S + 1)h̄2|ψ0 >? Find the ground state energy E0 and degeneracy.

(iii) Now consider a state

|k > ≡ 1√
N

N
∑

n=1

eikn |n > ,

where |n > denotes the state in which the spin at site n points down and the spins at all the
other states point up. (Note that k must be equal to 2πp/N , where p = 0, 1, 2, . . . , N−1).
Show that |k > is an eigenstate of H , and find its energy E(k) as a function of k. What
is the total spin of |k > as a function of k?

The state |k > is called a spin wave or magnon of wave number k, and the function
E(k)− E0 is called its dispersion relation.

52. Fine structure: The normalised wave functions in the 2P states of an electron in a hy-
drogen atom are given by

ψn=2,l=1,m,sz =
r

a
5/2
0

√
24

e−r/2a0 Y m
1 (θ, φ)

times
(

1
0

)

or

(

0
1

)

for sz = ± h̄/2 .

The wave functions have been normalised such that
∫

sin θdθdφ Y m′⋆
1 Y m

1 = δmm′

and
∫

d3~r ψ†
2,1,m′,sz′ ψ2,1,m,sz = δmm′ δszsz′ .
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Use first order perturbation theory to calculate the energy splitting between the j = 3/2
and j = 1/2 states produced by the spin-orbit interaction

e2

2m2c2r3
~L · ~S .

Express your answer in eV using the values of the fine structure constant α = e2/h̄c ≃
1/137, the Bohr radius a0 = h̄2/me2 = 0.529 Å, and e2/2a0 = 13.6 eV.

53. Hyperfine structure: The hyperfine splitting in the hydrogen atom is produced by the
interaction between the proton’s magnetic dipole moment ~µp = (gpe/2Mc)~Sp and the

electron’s dipole moment ~µe = −(e/mc)~Se. HereM andm denote the proton and electron

masses, −e is the electron charge, ~Sp and ~Se are the proton and electron spin operators,
and gp = 5.59 is the g-factor of the proton.

In a state with l = 0, the hyperfine interaction is given by

V = − 8π

3
~µe · ~µp δ

3(~r) .

Use first order perturbation theory to calculate the energy splitting in eV between the
j = 0 and j = 1 states in the 1S state of the H atom. Note that the normalised wave
functions of these states are given by

ψn=1,l=0,m=0 =
1

a
3/2
0

√
π
e−r/a0

times the appropriate spin wave functions of the electron and proton. What is the wave-
length of the photon emitted in a transition between the two states? (Use the values of
α and a0 given in the previous problem, M/m = 1840, and 2πh̄c = 12400 eV-Å).

54. Consider a particle with orbital angular momentum l = 1 and spin s = 1/2. (Ignore the
radial part of the wave function in this problem). Suppose that the Hamiltonian is given
by

H = A ~L · ~S + B (Lz + 2Sz),

where A and B are some constants.

(i) Show that Jz = Lz +Sz commutes with H . This implies that we can work in the basis
of eigenstates of Jz.

(ii) Find all the six energy levels exactly in terms of A and B. What are the values of Jz
in these six levels?
(Hint: Note that in the basis of eigenstates of Jz, the 6× 6 matrix for H breaks up into
blocks of sizes 1, 2, 2 and 1. So you will not need to find the eigenvalues of any matrix
bigger than 2× 2).

(iii) What happens to all these energy levels in the two limits A = 0 and B = 0 respec-
tively?
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55. Three distinguishable particles have the same spin S, namely, ~S2
n = S(S + 1)h̄2 for

n = 1, 2, 3. If the Hamiltonian is H = A(~S1 + ~S2 + ~S3)
2 and A > 0, what is the energy,

spin and degeneracy of the ground state if (i) S is an integer, and (ii) S is a half-odd-
integer?

56. Consider a two-dimensional isotropic harmonic oscillator with

H0 =
1

2m
(p2x + p2y) +

1

2
mω2(x2 + y2).

(i) We know that the second excited states with E
(0)
2 = 3h̄ω have a three-fold degeneracy.

Use degenerate perturbation theory to calculate the shifts in these three energy levels,
to first order in λ, if we add a perturbation V = λmω2xy. What are the eigenstates
corresponding to these energy levels?

(ii) Find the same three energy levels exactly for the Hamiltonian

H =
1

2m
(p2x + p2y) +

1

2
mω2(x2 + y2) + λmω2xy.

(iii) Show that the perturbative results and exact results agree to first order in λ.

57. Consider a three-dimensional isotropic harmonic oscillator with

H0 =
~p2

2m
+

1

2
mω2~r2 .

We know that the first excited states with E
(0)
1 = 5

2
h̄ω have a three-fold degeneracy.

(i) Use degenerate perturbation theory to calculate the shifts in these three energy levels,
to first order in λ, if we add a perturbation V = λmω2(xy + yz).

(ii) Now calculate these three energy levels exactly for the total Hamiltonian H = H0+V .

(iii) Show that your exact answers agree to first order in λ with those obtained using
perturbation theory.

(iv) Use the exact calculation to show that the problem becomes ill-defined if |λ| > 1/
√
2.

58. Consider the one-dimensional anharmonic oscillator with

H =
p2

2m
+

1

2
mω2x2 + λx4

where λ is small compared to the other parameters in the problem.

(i) Use first order perturbation theory to calculate the change in the energy of the nth

state.

(ii) Use second order perturbation theory to calculate the change in the ground state
energy.
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59. Consider a one-dimensional anharmonic oscillator with H = H0 + V , where

H0 =
p2

2m
+

1

2
mω2x2 and V = λ1x

3 + λ2x
4 ,

and λ1 and λ2 are small compared to the other parameters in the problem.

Use first and second order perturbation theory to calculate the change in the energy of the
ground state up to second order in λ1 and λ2, i.e., terms proportional to λ1, λ2, λ

2
1, λ

2
2

and λ1λ2.

60. Consider a one-dimensional oscillator with H = H0 + V , where

H0 =
p2

2m
+

1

2
mω2x2 and V = λx2,

and λ is small compared to the other parameters in the problem.

(i) Calculate all the energy levels of H exactly.

(ii) Use first and second order perturbation theory to calculate the change in the energy
of the n-th state of H0 up to second order in λ. Show that the perturbative result agrees
with the exact expression up to order λ2.

61. Consider a one-dimensional problem with a Hamiltonian given by

H =
p2

2m
+ V (x),

where x and p are operators. Let us denote the eigenstates and eigenvalues of H by |n〉
and En respectively; we will assume that En only takes a discrete set of values.

(i) Calculate the double commutator [x, [H, x]].

(ii) Use this and the fact that the identity operator can be written as the sum I =
∑

n′ |n′〉〈n′| to derive the equation

∑

n′

(En′ − En) |〈n′|x|n〉|2 =
h̄2

2m
.

This is an example of a ‘sum rule’. Note that it holds for every eigenstate |n〉.
(iii) Show explicitly that the above sum rule is satisfied for every eigenstate of H for the
case V = (1/2)mω2x2.
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