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Abstract

The precise characterization of the Higgs boson is a cornerstone of the Large Hadron
Collider (LHC) physics program. The dominant H → bb̄ decay channel provides a di-
rect probe of the Higgs coupling to bottom quarks, but its identification, especially in
boosted topologies crucial for certain production modes and Beyond the Standard Model
searches, is challenged by enormous Quantum Chromodynamics (QCD) multijet back-
grounds. This thesis presents the development and evaluation of a Deep Neural Network
(DNN) designed as a double b-tagger to identify boosted H → bb̄ decays within large-
radius (AK8) jets, utilizing publicly available CMS Run 2 simulation data (Record 12102,
√

s = 13 TeV). The DNN leverages a set of 28 engineered high-level features capturing
tracking, vertexing, and jet substructure information to classify signal jets against a fil-
tered QCD background.

The optimized DNN tagger achieves excellent discrimination performance on an in-
dependent test set, reaching a ROC Area Under the Curve (AUC) of 0.9441 and an
Average Precision (AP) of 0.9004. This significantly surpasses baseline benchmarks
(AUC ≈ 0.90) associated with this dataset; the optimized architecture demonstrated
strong performance (AUC ≈ 0.92) even with a reduced set of 27 features, with the fi-
nal result reflecting the combined benefit of the network design and the inclusion of the
crucial N-subjettiness (τ21) variable. At a working point optimized for balanced precision
and recall, the tagger achieves 83.3% signal efficiency with 81.9% precision. Feature im-
portance analysis confirms the synergistic role of substructure, vertexing, and B-hadron
lifetime information.

This work successfully demonstrates the effectiveness of applying optimized DNNs to
engineered features for a complex particle physics classification task using CMS Open
Data, providing a high-performance tagger and a strong foundation for future studies
involving validation with collision data and integration into physics analyses.
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Chapter 1

Introduction

1.1 The Standard Model and the Higgs Boson

The Standard Model (SM) of particle physics provides an exceptionally successful de-
scription of the known fundamental particles and the forces governing their interactions,
excluding gravity[1]. Within this framework, the mechanism proposed by Brout, Englert,
Higgs, Guralnik, Hagen, and Kibble explains the origin of mass for elementary particles
through their interaction with a scalar field permeating spacetime, known as the Higgs
field [2]. The quantum excitation of this field is the Higgs boson, a scalar particle with a
mass measured to be mH ≈ 125 GeV [1].

The discovery of the Higgs boson at the CERN Large Hadron Collider (LHC) in 2012
by the ATLAS and CMS experiments was a landmark achievement, confirming a key
prediction of the SM [3, 4]. Subsequent research has focused intensely on characterizing
this particle, measuring its production cross-sections (σ), decay branching ratios (BR),
and couplings to other SM particles. Precise measurements of these properties are crucial
tests of the SM’s validity and serve as powerful indirect searches for physics Beyond the
Standard Model (BSM), as deviations could indicate the influence of new, undiscovered
phenomena.

1.2 The H → bb̄ Decay Channel in Boosted Topolo-
gies

Within the SM, the Higgs boson predominantly decays into the heaviest particle kine-
matically accessible. For mH ≈ 125 GeV, the largest branching ratio is predicted to be
into a pair of bottom quarks, BR(H → bb̄) ≈ 58% [5]. This decay mode offers the most
statistically powerful channel to directly probe the Higgs boson’s coupling to down-type

1



CHAPTER 1. INTRODUCTION 2

quarks, a fundamental parameter of the SM.

Experimentally, observing the H → bb̄ decay at a hadron collider like the LHC
is extremely challenging. The signal process, characterized by a rate proportional to
σ(pp → H + X) × BR(H → bb̄), is swamped by an enormous background from Quan-
tum Chromodynamics (QCD) multijet production, particularly processes involving gluon
splitting g → bb̄ or direct bb̄ production. The cross-section for producing jets containing
b-quarks via QCD processes is many orders of magnitude larger than the Higgs signal
rate.

In scenarios where the Higgs boson is produced with high transverse momentum (pT )
– referred to as boosted topologies – its decay products (b and b̄) become highly
collimated. Standard jet algorithms with small radius parameters (like R = 0.4) may fail
to resolve the two b-quarks into separate jets. Instead, algorithms using a larger radius
parameter (e.g., R = 0.8) are employed to reconstruct the H → bb̄ system as a single fat
jet. Identifying such fat jets as originating from H → bb̄ requires sophisticated techniques,
often referred to as double b-tagging, that exploit the jet’s internal structure and
the specific properties of b-hadrons within it. Isolating the signal requires exceptional
background rejection capabilities.

1.3 Jet Physics and Double b-Tagging at the LHC

High-energy proton-proton collisions at the LHC produce quarks and gluons which shower
and hadronize, forming collimated sprays of particles reconstructed as jets. Fat jets,
typically reconstructed using the anti-kT algorithm with R = 0.8 (AK8 jets) [6], are
crucial for studying boosted heavy particles.

Identifying the flavour content of these jets is critical. Jets initiated by bottom quarks
(b-jets) are distinguishable due to the properties of the B-hadrons they contain. B-
hadrons possess a significant lifetime (τB ∼ 1.5 ps), leading to decay vertices measurably
displaced from the primary interaction point (PV) [1]. This results in associated tracks
having large impact parameters (d0) relative to the PV. B-hadron decays also typically
have higher track multiplicities and may contain leptons.

Standard b-tagging algorithms exploit these features using track impact parameter
significance and secondary vertex (SV) reconstruction. In the context of boosted H → bb̄

decays reconstructed as a single fat jet, double b-tagging algorithms aim to identify
the presence of two distinct b-hadrons within the jet. This often involves analysing the
properties of sub-jets found within the fat jet, searching for multiple displaced vertices,
or using advanced Machine Learning (ML) techniques that combine numerous input vari-
ables related to tracks, vertices, and the jet’s substructure (e.g., N-subjettiness τ21) [7].
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Modern approaches increasingly utilize Deep Learning (DL) to learn complex correlations
from these inputs, achieving substantial performance improvements [8].

1.4 CMS Open Data

The progress in particle physics relies on analysing large, complex datasets. The CMS
Collaboration, alongside other LHC experiments and CERN, fosters open science through
the CERN Open Data portal [9]. This initiative provides public access to significant
fractions of the collision and simulation data collected by the experiments, complete
with the necessary software environments and documentation. This open data policy
enables data preservation, facilitates independent analyses and reproducibility, supports
educational outreach, and empowers researchers globally to contribute to physics analysis
and methods development. This thesis utilizes simulation data released through this
portal, specifically corresponding to CMS Run 2 conditions at

√
s = 13 TeV.

1.5 Thesis Objective and Scope

The primary objective of this thesis is the development and evaluation of a Deep
Neural Network (DNN) designed as a double b-tagger to identify boosted Higgs
bosons decaying to bottom quark pairs (H → bb̄) within large-radius jets, discriminating
them from Quantum Chromodynamics (QCD) multijet backgrounds.

The study leverages Monte Carlo simulation samples from the CMS experiment’s Run
2 Open Data release. A specific focus is placed on utilizing a set of 28 high-level,
engineered features (x ∈ R28) derived from reconstructed fat jet properties (AK8),
encompassing tracking information, secondary vertex characteristics, impact parameters,
and jet substructure variables. The DNN learns a mapping f : x 7→ P (y = 1|x), where
y = 1 represents the H → bb̄ class.

The scope is defined by this specific binary classification task (boosted H → bb̄ vs.
filtered QCD) within the selected kinematic phase space relevant for boosted topolo-
gies, using the aforementioned engineered feature set. The performance of the developed
DNN tagger is rigorously evaluated using standard classification metrics, achieving high
discrimination performance characterized by an area under the ROC curve (AUC) of
0.9441 and an average precision (AP) of 0.9004 on an independent test set. This work
serves as a case study in applying optimized DNNs to engineered features for a challenging
particle physics classification problem using publicly available data.
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1.6 Thesis Outline

The remainder of this thesis is structured as follows:

• Chapter 2 provides a more detailed overview of the relevant physics background,
including the Standard Model, Higgs boson physics, jet reconstruction in boosted
topologies, jet substructure, and the principles underlying b-tagging and double
b-tagging techniques.

• Chapter 3 describes the specific CMS Open Data simulation samples used, details
the data preprocessing workflow including the kinematic filtering applied, and lists
the 28 engineered features selected as inputs for the model.

• Chapter 4 outlines the machine learning methodology, covering the fundamentals
of Deep Neural Networks, the specific architecture implemented (including hyper-
parameter optimization details), the training procedure, and the metrics used for
performance evaluation.

• Chapter 5 presents the results of the study, including analysis of input features,
model training details, comprehensive performance evaluation on the test dataset
(AUC, AP, rejection factors, etc.), and potentially additional analyses such as fea-
ture importance or performance dependencies.

• Chapter 6 discusses the interpretation of the results, compares the achieved per-
formance with relevant benchmarks, contextualizes the findings within the broader
field of jet tagging, acknowledges the limitations of the study, and suggests potential
avenues for future work.

• Chapter 7 concludes the thesis by summarizing the key findings and contributions
of this work.



Chapter 2

Physics Background

This chapter provides the necessary physics context for understanding the identification
of Higgs boson decays to bottom quarks (H → bb̄) at the Large Hadron Collider (LHC),
particularly within the challenging environment of boosted topologies. We will briefly
review relevant aspects of the Standard Model, discuss the production of jets and the
specific properties of b-quark jets, describe the dominant background processes, outline
the principles underlying b-tagging algorithms, introduce concepts of jet substructure rel-
evant for boosted objects, and finally, discuss the motivation for using high-level features
as inputs for the machine learning model developed in this thesis.

2.1 The Standard Model Context

The Standard Model (SM) of particle physics is the theoretical framework describing the
fundamental constituents of matter—quarks and leptons—and their interactions via force
carriers (gauge bosons) [1]. The particles relevant to this analysis include the six quarks
(up, down, charm, strange, top, bottom), the six leptons (electron, muon, tau, and their
corresponding neutrinos), the gauge bosons mediating the fundamental forces (photon
for electromagnetism, W and Z bosons for the weak force, gluons for the strong force),
and the Higgs boson (H).

A key feature of the SM is the Higgs mechanism, responsible for generating the masses
of the W and Z bosons and the fundamental fermions through their interaction with the
Higgs field. The Higgs boson itself is a scalar particle with a mass measured precisely by
the ATLAS and CMS experiments to be mH ≈ 125 GeV[1]. Within the SM, the Higgs
boson couples to other particles with a strength proportional to their mass. This implies
a significant coupling to the heavy bottom quark (mb ≈ 4.2 GeV), making the H → bb̄

decay the most probable one (BR(H → bb̄) ≈ 58%) [5]. Studying this decay channel is
therefore crucial for probing the Higgs coupling to down-type quarks.

5



CHAPTER 2. PHYSICS BACKGROUND 6

2.2 Jet Production and Reconstruction at the LHC

In high-energy proton-proton (pp) collisions at the LHC, the fundamental interactions
occur between the constituent partons (quarks and gluons) within the protons. When
high-momentum partons are produced in the hard scattering process, they cannot exist
as free coloured objects due to Quantum Chromodynamics (QCD) confinement. Instead,
they initiate a complex sequence of events:

• Parton Showering: The initial high-energy parton radiates gluons, which can
subsequently split into quark-antiquark pairs (g → qq̄) or further gluons (g → gg).
Quarks can also radiate gluons (q → qg). This process creates a cascade of lower-
energy partons moving in roughly the same direction.

• Hadronization: As the energy scale decreases during the shower, the partons
combine to form colour-neutral bound states called hadrons (mesons like pions and
kaons, and baryons like protons and neutrons).

The result of this cascade is a collimated spray of dozens or even hundreds of detectable
particles (mostly hadrons, but also photons and leptons from decays) traveling in ap-
proximately the same direction as the initial high-energy parton. Experimentally, these
sprays are reconstructed as jets.

Jets are typically reconstructed by clustering energy deposits in calorimeter cells or,
more commonly at CMS, by clustering reconstructed particles identified by the Particle
Flow algorithm [10] using sequential recombination algorithms. The standard algorithm
used at the LHC is the anti-kT algorithm [6]. This algorithm takes a radius param-
eter R =

√
(∆η)2 + (∆ϕ)2, where ∆η and ∆ϕ are the distances in pseudorapidity and

azimuthal angle, respectively. Standard analyses often use R = 0.4 (AK4 jets).

2.3 Boosted Topologies and Fat Jets

In many physics processes at the LHC, including the production of Higgs bosons, the
particle of interest can be produced with very high transverse momentum (pT ). When
such a heavy particle (like H, W, Z, or top quark) decays hadronically, its decay products
are kinematically forced (”boosted”) into a narrow cone in the detector. The typical an-
gular separation ∆R between the decay products scales approximately as ∆R ∼ 2m/pT ,
where m is the mass of the decaying particle.

For a Higgs boson with mH ≈ 125 GeV, if its pT is sufficiently high (e.g., pT ≳

250 − 300 GeV), the ∆R between the b and b̄ quarks becomes small enough (∆R ≲ 1.0)
that their subsequent parton showers and hadronization streams significantly overlap.
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This transition from a resolved two-jet topology to a merged single-jet topology as a
function of the Higgs boson’s pT is illustrated in Fig. 2.1. In such boosted topologies,
a standard small-radius jet algorithm (like AK4) might reconstruct the decay products
as two separate, nearby jets, or might fail to efficiently capture the full system.

Figure 2.1: Illustration of jet clustering for H → bb̄ decays as a function of the Higgs boson
transverse momentum (pT (H)). At lower pT (H), the decay products form two separate jets (e.g.,
with R = 0.4). As pT (H) increases, the decay products become more collimated, eventually
merging into a single large-radius jet (e.g., with R = 0.8). (Adapted from [11])

To address this, analyses targeting boosted particles employ fat jets, which are recon-
structed using the same algorithm (typically anti-kT ) but with a larger radius parameter,
commonly R=0.8 (AK8 jets) or sometimes R=1.0. An AK8 jet has a much higher
probability of containing all the decay products of a boosted heavy particle like the Higgs
boson. This thesis focuses on the identification of H → bb̄ decays reconstructed within
such AK8 fat jets.

2.4 Properties of b-Quark Jets

Jets originating from the hadronization of a bottom quark (b-jets) possess distinct prop-
erties compared to jets from light quarks (u, d, s) or gluons. These differences arise
primarily from the characteristics of the B-hadrons (mesons such as B0, B+, B0

s and
baryons such as Λ0

b) formed during hadronization. Key properties include [1]:

• Long Lifetime: B-hadrons have a relatively long average proper lifetime, τB ≈
1.5 ps. This corresponds to a proper decay length of cτB ≈ 450 µm. In the
laboratory frame, highly energetic B-hadrons produced in LHC collisions travel a
measurable distance before decaying, due to relativistic time dilation (γ = E/mB).
This lab-frame decay length (∼ γcτB) often results in decay vertices displaced by
millimeters from the primary pp interaction vertex (PV).
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• High Mass: The mass of B-hadrons (mB ≈ 5 GeV) is significantly larger than
that of light hadrons or D-hadrons (containing charm quarks, mD ≈ 1.9 GeV). This
influences the kinematics of their decay products.

• Decay Characteristics: B-hadron decays typically result in multiple charged
particles (average charged multiplicity ∼ 5). Furthermore, semi-leptonic decays
(e.g., b → cℓ−ν̄ℓ) occur with a branching ratio of approximately 10–11% for each
lepton flavour (ℓ = e, µ). These decays produce relatively low-pT leptons within the
jet cone.

These properties, particularly the long lifetime leading to displaced decay vertices and
tracks with large impact parameters, are crucial for b-tagging, as illustrated schematically
in Fig. 2.2. They form the basis for experimentally identifying, or ”tagging,” b-jets.

Figure 2.2: Schematic view of a b-jet illustrating key properties for b-tagging: the primary
vertex (PV), a secondary vertex (SV) displaced from the PV due to the B-hadron’s lifetime, the
transverse decay length (Lxy), and the transverse impact parameter (d0) of a track originating
from the SV. (Adapted from [12])

2.5 Principles of b-Tagging and Double b-Tagging

b-Tagging algorithms aim to distinguish b-jets from c-jets (originating from charm quarks)
and light-flavour/gluon jets by exploiting the unique properties of B-hadrons. Key ex-
perimental signatures leveraged include:
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• Track Impact Parameter (IP): Charged particles produced in B-hadron decays
often originate from a displaced vertex. This results in their reconstructed tracks
having large impact parameters (transverse d0 and longitudinal z0) relative to the
PV. The significance of the impact parameter, typically defined as S = d0/σd0

where σd0 is the measurement uncertainty on d0, is a powerful variable, as tracks
from b-decays tend to have large positive S values. Algorithms often combine the
significance information from multiple tracks within a jet.

• Secondary Vertex (SV) Reconstruction: The displaced decay point of a B-
hadron can often be reconstructed as a secondary vertex (SV), separate from the
PV. Algorithms search for clusters of tracks consistent with originating from a com-
mon displaced point. Properties of reconstructed SVs, such as their flight distance
significance (distance from PV divided by its uncertainty), invariant mass, track
multiplicity, and energy fraction, serve as strong indicators of a b-jet.

• Soft Lepton Identification: The presence of a relatively low-pT electron or muon
within the jet cone, consistent with a semi-leptonic B-decay, provides an additional
discriminating handle.

In the context of boosted H → bb̄ decays captured within a single fat jet (like AK8),
the task becomes double b-tagging: identifying the simultaneous presence of two b-
quarks originating from the Higgs decay. This requires analysing the internal structure
of the fat jet. Techniques include:

• Identifying two distinct sub-jets within the fat jet and applying standard b-tagging
algorithms to each sub-jet.

• Searching for multiple displaced secondary vertices within the fat jet cone.

• Using multivariate algorithms (like DNNs) trained specifically to recognize the pat-
tern of two b-hadron decays within the fat jet, using inputs related to tracks, ver-
tices, and overall jet substructure.

The DNN developed in this thesis falls into the latter category, aiming to perform this
double b-tagging task.

2.6 Jet Substructure

The internal structure of jets, particularly fat jets, carries valuable information about
the particle that initiated the jet. Jet substructure techniques aim to exploit this
information [7]. Two concepts relevant to this work are:
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• Jet Grooming: These algorithms aim to remove contamination from soft, wide-
angle radiation associated with the initial hard scatter, as well as contributions from
pileup (additional pp interactions occurring in the same bunch crossing). Groom-
ing provides a more stable measurement of the jet’s mass and internal structure,
connecting it more closely to the hard decay products. Soft Drop [13] is a widely
used grooming algorithm that recursively removes soft, wide-angle branches from
the jet’s clustering history. The mass calculated after applying Soft Drop (mSD)
is often used in boosted object searches (and was used for the pre-selection cuts in
this thesis, Sec. 3).

• N-subjettiness (τN): This variable quantifies how consistent a jet’s energy distri-
bution is with having N distinct sub-jets (or ”prongs”) compared to N − 1 sub-jets
[14]. The ratio τ21 = τ2/τ1 is particularly useful for discriminating 2-prong decays
(like H → bb̄, W→ qq̄′, Z→ qq̄) from 1-prong QCD jets (initiated by single quarks
or gluons). Jets originating from 2-prong decays are expected to have smaller values
of τ21. This variable is one of the inputs to the DNN developed here.

2.7 High-Level Features for Machine Learning

While state-of-the-art taggers increasingly use low-level inputs like lists of tracks and
calorimeter clusters (”constituents”), a powerful and widely used approach involves defin-
ing a set of high-level or engineered features. These features are calculated based
on the reconstructed objects (jets, tracks, vertices) and are designed to capture the key
physical characteristics relevant for discrimination (lifetime information, decay kinemat-
ics, substructure patterns) in a fixed-size vector x ∈ RN .

Examples include:

• Counts of objects (e.g., number of tracks, number of secondary vertices).

• Kinematic properties of tracks or vertices (e.g., impact parameter significances,
vertex mass, flight distance significance).

• Jet substructure variables (e.g., N-subjettiness ratios like τ21).

• Angular information (e.g., ∆R between objects).

These feature vectors can then be fed into standard machine learning algorithms like
Boosted Decision Trees (BDTs) or, as in this thesis, Deep Neural Networks (DNNs). The
ML algorithm learns the optimal way to combine these physically motivated features to
perform the classification task. The specific set of 28 high-level features used in this work
is detailed in Sec. 3.



Chapter 3

Dataset and Simulation

This chapter details the origin and preparation of the dataset used for training and
evaluating the Deep Neural Network (DNN) double b-tagger developed in this thesis. It
begins with an overview of the Large Hadron Collider (LHC) Run 2 conditions and the
Compact Muon Solenoid (CMS) detector, followed by a description of the specific Monte
Carlo simulation samples obtained from the CERN Open Data Portal. The core of the
chapter describes the multi-step workflow employed to process these samples, define the
signal and background categories, filter the data based on kinematic requirements, and
select the final set of input features. Finally, the characteristics of the resulting dataset
used for the machine learning task are presented.

3.1 LHC Run 2 and the CMS Detector

The data used in this study originates from simulations corresponding to the operating
conditions of the Large Hadron Collider (LHC) during its second major run (Run 2),
specifically simulating 2016 conditions. During this period, the LHC collided protons
(pp) at a center-of-mass energy of

√
s = 13 TeV. The Compact Muon Solenoid (CMS)

experiment is a general-purpose particle detector situated at one of the LHC’s interaction
points [15]. Its design features a high-field superconducting solenoid magnet (3.8 T) en-
compassing various subdetectors crucial for reconstructing the products of pp collisions.
These include a high-granularity silicon tracker for precise charged particle trajectory
and vertex reconstruction, electromagnetic and hadronic calorimeters for energy mea-
surements, and extensive muon chambers. The Particle Flow (PF) algorithm integrates
information from all subsystems to provide a comprehensive reconstruction of individual
particles (photons, electrons, muons, charged and neutral hadrons) within each event
[10], which are then used as inputs for jet clustering.

11
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3.2 Monte Carlo Simulation Samples

This analysis relies exclusively on Monte Carlo (MC) simulated datasets obtained from
the CERN Open Data Portal [9]. These datasets simulate pp collisions at

√
s = 13 TeV

and the subsequent response of the CMS detector, providing the necessary ground truth
information required for supervised machine learning studies.

The specific dataset record used is titled “Sample with jet, track and secondary ver-
tex properties for Hbb tagging ML studies” (Record 12102) [16]. This record contains
NTuples derived from the RunIISummer16MiniAODv2 simulation campaign, corre-
sponding to 2016 data-taking conditions (processed with CMSSW 80X). According to
the record’s description page, it includes jets identified as originating from Higgs bosons
decaying to bb̄ (H → bb̄) for the signal component, and jets from QCD multijet processes
for the background component.

• Signal (H → bb̄): The record description page lists Beyond the Standard Model
/BulkGravTohhTohbbhbb... samples (generated using MadGraph [17]) as source
datasets containing H → bb̄ decays.

• Background (QCD): The background component is confirmed to originate from
QCD multijet events simulated across various transverse momentum (pT ) bins using
the PYTHIA8 generator [18]. The specific source datasets listed on the record page
correspond to entries such as QCD Pt XXXtoYYY TuneCUETP8M1 13TeV pythia8.

The NTuples contain a pre-processed selection of jets stored in a flat TTree structure
named deepntuplizer/tree. The variables relevant for this analysis, including high-
level jet features prefixed with fj (indicating fat jets, specifically AK8 jets as discussed
in Sec. 2) and truth information (such as flags identifying jets matched to H → bb̄ decays
or QCD processes), are available within this tree for training and evaluation.

3.3 Data Preparation Workflow

A dedicated workflow was implemented using Python, leveraging libraries such as uproot,
awkward-array, pyarrow, and pandas, to transform the data from the downloaded
ROOT NTuples into the final format used for DNN training and evaluation. The key
steps are outlined below.
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3.3.1 ROOT to Parquet Conversion

The initial step involved converting the data stored in the deepntuplizer/tree TTree
within the downloaded .root files into the Apache Parquet format [19]. The uproot li-
brary [20] was used to read the ROOT files efficiently, and the data for relevant branches
was converted into Apache Arrow arrays, which were then written to Parquet files using
pyarrow. This conversion facilitates faster data loading and manipulation in the subse-
quent Python-based processing steps due to Parquet’s columnar storage structure and
potential for type optimization.

3.3.2 Signal, Background Definition and Filtering

The Parquet files generated in the previous step were processed individually using a script
based on the pandas library. This script performed the following crucial steps to define
the analysis dataset:

1. Label Definition: Intermediate boolean flags were created based on Monte Carlo
truth variables present in the NTuples:

• Signal jets (isHbb) were defined by requiring the jet to be matched to a Higgs
boson (fj isH == 1) and to contain two b-quarks (fj isBB == 1).

• Background jets (isQCD) were defined by requiring the jet to originate from
a QCD process (fj isQCD == 1) and confirming that the source sample was
indeed QCD (using flags like sample isQCD == 1 if available, or implicitly by
processing only QCD source files for background).

2. Kinematic Cuts: Jets were required to satisfy kinematic selections relevant for
boosted Higgs analyses, targeting a specific phase space:

40 < fj sdmass < 200 GeV, 300 < fj pt < 2000 GeV.

Here, fj sdmass refers to the Soft Drop groomed mass of the AK8 jet, and fj pt
is its transverse momentum. As discussed in Sec. 2, the pT cut selects the boosted
regime, while the mass cut defines a window around the expected Higgs mass (mH ≈
125 GeV), albeit a relatively wide one for this pre-selection stage.

3. Binary Task Filter: Only jets satisfying exactly one of the above signal or back-
ground conditions were kept, by applying the filter

isHbb + isQCD == 1.
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This step ensures a clean dataset containing only jets unambiguously belonging
either to the target signal (H → bb̄) or the defined QCD background category for
this specific study.

4. Final Label Assignment: A final binary column label was created, where a
value of 1 denotes signal jets (where isHbb is 1) and 0 denotes background jets
(where isQCD is 1).

5. Feature Selection & NaN/Inf Handling: Only the predefined input features
(listed in Sec. 3.4) and the final label were retained. Any remaining missing
(NaN) or infinite values in the feature columns, resulting from reconstruction failures
or undefined quantities, were handled by imputing with the median value of the
respective feature column calculated from the training dataset.

The fully processed and filtered DataFrames were saved as new Parquet files, which were
then concatenated to form the final dataset used for training and evaluation.

3.4 Input Features

The DNN model developed in this thesis utilizes a set of N = 28 high-level, engineered
features derived from the AK8 fat jet properties as available in the processed dataset
from Record 12102. These features capture information related to tracking, secondary
vertices, track impact parameters, and jet substructure. The specific features used are:

• fj jetNTracks: Number of tracks associated with the jet.

• fj nSV: Number of reconstructed secondary vertices within the jet.

• fj tau0 trackEtaRel 0, 1, 2: Relative pseudorapidity (ηrel) of the leading three
tracks associated with the leading secondary vertex candidate’s subjet axis.

• fj tau1 trackEtaRel 0, 1, 2: Relative pseudorapidity (ηrel) of the leading three
tracks associated with the sub-leading secondary vertex candidate’s subjet axis.

• fj tau flightDistance2dSig 0, 1: 2D flight distance significance of the leading
and sub-leading secondary vertices (SVs).

• fj tau vertexDeltaR 0: ∆R between the leading SV direction and the jet axis.

• fj tau vertexEnergyRatio 0, 1: Energy fraction carried by tracks associated
with the leading and sub-leading SVs.
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• fj tau vertexMass 0, 1: Invariant mass of the tracks associated with the leading
and sub-leading SVs.

• fj trackSip2dSigAboveBottom 0, 1: 2D impact parameter significance of the
leading two tracks, computed relative to a B-hadron lifetime hypothesis.

• fj trackSip2dSigAboveCharm 0: 2D impact parameter significance of the leading
track, computed relative to a C-hadron lifetime hypothesis.

• fj trackSipdSig 0, 1, 2, 3: 3D impact parameter significance (IP/σIP ) of the
1st through 4th leading pT tracks associated with the jet.

• fj trackSipdSig 0 0, 0 1: Components related to the 3D impact parameter sig-
nificance calculation for the leading track.

• fj trackSipdSig 1 0, 1 1: Components related to the 3D impact parameter sig-
nificance calculation for the second leading track.

• fj z ratio: A momentum-sharing variable related to subjet kinematics, potentially
sensitive to the symmetric splitting in H → bb̄.

• fj tau21: N-subjettiness ratio τ2/τ1, sensitive to the 2-prong versus 1-prong struc-
ture of the jet.

These 28 features constitute the input vector x for the DNN model. Note that the jet pT

and Soft Drop mass, while used for the initial kinematic selection, were not included as
input features to the DNN itself.

3.5 Final Dataset Characteristics

After applying the full data preparation workflow described above to the selected ROOT
files from the CMS Open Data Record 12102, the final combined dataset used for training,
validation, and testing contained a total of 629,619 jets.

The class distribution in the final dataset is as follows:

• Signal (H → bb̄, label=1): 209,305 jets (≈ 33.2%).

• Background (Filtered QCD, label=0): 420,314 jets (≈ 66.8%).

This dataset exhibits a moderate class imbalance, with approximately twice as many
background jets as signal jets. The dataset was subsequently split using stratified sam-
pling into training (64%), validation (16%), and test (20%) subsets, preserving the class
proportions in each. The specific number of jets in each subset is detailed in Sec. 4 and
Sec. 5.



Chapter 4

Methodology

This chapter details the machine learning methodology employed in this thesis to develop
the double b-tagger, discriminating between jets originating from Higgs boson decays to
bottom quarks (H → bb̄) and those from Quantum Chromodynamics (QCD) multijet
processes. It begins with fundamental concepts of supervised learning and Deep Neural
Networks (DNNs), describes the specific components and architecture of the DNN model
used, outlines the hyperparameter optimization process, details the training procedure
including the choice of loss function and optimizer, and finally defines the metrics used
for evaluating the model’s performance.

4.1 Machine Learning Fundamentals

The task addressed in this thesis falls under the category of supervised learning,
specifically binary classification. Given a dataset of input examples, each characterized
by a set of features x ∈ RN (where N = 28 is the number of high-level features described
in Sec. 3) and associated with a known true label y ∈ {0, 1} (where y = 1 represents the
signal class, H → bb̄, and y = 0 represents the background class, filtered QCD), the goal
is to train a model f that learns a mapping f : x 7→ ŷ. Here, ŷ is typically the predicted
probability P (y = 1|x) that the input jet belongs to the signal class. The model should
generalize well, meaning it should accurately classify previously unseen examples from a
test dataset drawn from the same underlying distribution.

4.2 Deep Neural Networks (DNNs)

Deep Neural Networks are powerful function approximators inspired by the structure of
biological neural networks, capable of learning complex patterns in data. The specific

16
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type used in this work is a feedforward DNN, also known as a Multi-Layer Perceptron
(MLP). These networks consist of interconnected layers of artificial neurons (or nodes).

A typical neuron computes a weighted sum of its inputs from the previous layer, adds
a bias term, and then applies a non-linear activation function σ(·) to the result. For
a neuron receiving inputs zin with weights w and bias b, the output is zout = σ(w · zin +
b). Stacking layers of these neurons allows the network to learn increasingly complex
hierarchical representations of the input data.

The choice of activation function introduces non-linearity, enabling the network to
learn relationships beyond simple linear combinations. This work primarily utilizes the
Sigmoid-weighted Linear Unit (SiLU), also known as Swish [21], defined as:

SiLU(x) = x · sigmoid(x) = x

1 + e−x
(4.1)

SiLU has been shown to perform well in deep networks, often outperforming traditional
functions like ReLU in certain tasks. The final output layer uses the standard sigmoid
(logistic) function, σ(x) = 1/(1 + e−x), to produce a probability estimate P (y = 1|x)
bounded between 0 and 1.

4.3 DNN Components Used

The implemented DNN architecture incorporates several standard components to improve
training stability, generalization, and performance:

• Batch Normalization: Applied after dense layers (before activation), Batch Nor-
malization [22] normalizes the activations within each mini-batch during training.
This helps to stabilize the training process by reducing internal covariate shift, al-
lows for potentially higher learning rates, reduces sensitivity to weight initialization,
and can have a regularizing effect.

• Dropout: Dropout [23] is a regularization technique used to prevent overfitting.
During training, it randomly sets a fraction of neuron outputs in a layer to zero
for each training example (based on the dropout rate). This forces the network to
learn more robust representations that do not overly rely on any single neuron or
feature pathway. The specific dropout rates used in this model were determined
via hyperparameter optimization (Sec. 4.4).

• L2 Regularization (Weight Decay): Added as a kernel regularizer to the Dense
layers, L2 regularization penalizes large weight values by adding a term propor-
tional to the squared magnitude of the weights to the loss function (λ∥w∥2

2). This
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encourages smaller weights, leading to simpler models that often generalize better.
The regularization strength (λ) was also optimized.

• Residual Connections: Inspired by ResNet architectures [24], a residual (or skip)
connection was implemented within the network. The output of one block of layers
is added element-wise to the output of a subsequent block before the final activation
of that combined block. This allows gradients to propagate more easily through
deeper networks, mitigating the vanishing gradient problem and facilitating the
training of deeper architectures by allowing the network to easily learn identity
mappings if needed.

4.4 Hyperparameter Optimization with Keras Tuner

Finding optimal hyperparameters for a Deep Neural Network (DNN) is crucial for achiev-
ing the best possible performance. Manual tuning can be time-consuming and inefficient.
Therefore, this work utilized the Keras Tuner library [25], a framework specifically de-
signed for optimizing hyperparameters of Keras models. Keras Tuner provides several
search algorithms to explore the defined hyperparameter space and identify combinations
that maximize (or minimize) a chosen objective metric evaluated on a validation dataset.

In this thesis, Keras Tuner, using the Hyperband algorithm (kt.Hyperband), was
employed to optimize key hyperparameters of the DNN architecture and the training
process. The search space included:

• Number of units in the first, third, and fourth dense blocks (denoted as units 1,
units 3, units 4).

• Dropout rates following each of the four main dense layers (dropout 1, dropout 2,
dropout 3, dropout 4).

• L2 regularization strength (l2 reg) applied to the dense layers.

• Learning rate (lr) for the Adam optimizer.

The Hyperband tuner efficiently searched this space by adaptively allocating resources,
training promising configurations for more epochs while quickly discarding less promising
ones. Each trial involved building a model with a specific hyperparameter combination,
training it for a variable number of epochs (up to a maximum of 50 in this case) us-
ing early stopping within the trial (patience=8) based on validation performance, and
evaluating it on the validation set. The objective function maximized during the opti-
mization process was the Area Under the ROC Curve (val auc) calculated on the vali-
dation set. The set of hyperparameters corresponding to the trial that yielded the best
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validation AUC (specifically: units 1=320, units 3=192, units 4=96, dropout 1=0.35,
dropout 2=0.40, dropout 3=0.25, dropout 4=0.25, l2 reg=1e-6, lr=0.000607) was
selected and used for the final model architecture and training detailed in Sec. 4.5 and
Sec. 4.6.

4.5 Implemented Model Architecture

The final DNN architecture, incorporating the components described in Sec. 4.3 and
using the optimal hyperparameters selected via Keras Tuner (as detailed in Sec. 4.4),
was implemented using the Keras API [26] within TensorFlow [27]. It takes the N = 28
input features (Sec. 3.4) and processes them through a series of blocks, as illustrated
schematically in Fig. 4.1.

Input
(28 Features)

Batch Norm

Output
(1 Neuron, Sigmoid)

Dense (320)

Batch Norm

Dropout (0.35) Dense (320)

+

Residual

Batch Norm

Dropout (0.40)

SiLU Dense (192)

Batch Norm

Dropout (0.25) Dense (96)

Batch Norm

Dropout (0.25)

Figure 4.1: Schematic diagram of the implemented Deep Neural Network (DNN) architecture.
It shows the input layer, batch normalization, dense layers with SiLU activation, dropout layers,
the residual connection adding outputs from Block 1 and Block 2, and the final sigmoid output
layer.

The architecture can be summarized as follows (referencing optimized hyperparameters
HP *):

1. Input Layer (shape: 28 features)

2. Batch Normalization (applied directly to inputs)

3. Block 1:
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• Dense Layer (HP UNITS 1 = 320 neurons, L2 reg = HP L2 REG = 10−6, SiLU
activation)

• Batch Normalization

• Dropout (rate = HP DROPOUT 1 = 0.35)

4. Block 2:

• Dense Layer (HP UNITS 1 = 320 neurons, L2 reg = 10−6, SiLU activation)

• Batch Normalization

• Dropout (rate = HP DROPOUT 2 = 0.40)

5. Residual Connection: Output of Block 1 is added element-wise to the output of
Block 2.

6. Activation (SiLU) applied to the sum from the residual connection.

7. Block 3:

• Dense Layer (HP UNITS 3 = 192 neurons, L2 reg = 10−6, SiLU activation)

• Batch Normalization

• Dropout (rate = HP DROPOUT 3 = 0.25)

8. Block 4:

• Dense Layer (HP UNITS 4 = 96 neurons, L2 reg = 10−6, SiLU activation)

• Batch Normalization

• Dropout (rate = HP DROPOUT 4 = 0.25)

9. Output Layer: Dense Layer (1 neuron, Sigmoid activation)

This architecture, determined through optimization, provides a specific balance between
network capacity and regularization tailored to this dataset and feature set.

4.6 Training Procedure

The final DNN model with the optimized architecture was trained using the processed
dataset described in Sec. 3. Key aspects of the training procedure include:

• Data Split: The final dataset (containing 629,619 jets, see Sec. 3.5) was split into
training (64%), validation (16%), and test (20%) sets using stratified sampling to
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preserve the approximate background-to-signal ratio in each subset. The training
set is used to update model weights, the validation set is used for monitoring training
progress and tuning the final classification threshold (Sec. 5.4), and the test set is
held out for final unbiased performance evaluation.

• Feature Scaling: Before training, the 28 input features in the training set were
scaled using sklearn.preprocessing.StandardScaler (removing the mean and
scaling to unit variance). The same fitted scaler object was then applied to the
validation and test sets to ensure consistent scaling based only on training set
information.

• Loss Function: Preliminary data exploration revealed that the class imbalance
between signal (H → bb̄) and background (QCD) could vary significantly (from
approximately 1:2 up to 1:9) depending on the specific kinematic selections applied
(e.g., different jet pT or mass ranges). Although the final dataset used for training
exhibited a moderate imbalance (roughly 1:2 signal-to-background, see Sec. 3.5), the
potential for larger imbalances motivated the choice of the Focal Loss [28]. This
loss function is designed to be robust against class imbalance by down-weighting
easy-to-classify examples (typically the abundant background class) and focusing
the training effort on harder-to-classify examples. The Focal Loss is defined as:

LF L(pt) = −αt(1 − pt)γ log(pt) (4.2)

where pt = p if y = 1 and pt = 1−p if y = 0, with p = P (y = 1|x) being the model’s
predicted probability for the positive class. The parameters αt (balancing factor,
α for class 1, 1 − α for class 0) and γ (focusing parameter) control the weighting.
Standard values of α = 0.5 and γ = 2.0 were used in this work, providing a balance
between addressing imbalance and focusing on difficult examples.

• Optimizer: The Adam optimizer [29] was used for updating the model weights,
utilizing the learning rate which was found during hyperparameter optimization
(HP LEARNING RATE = 0.000607) and default β1, β2 parameters. Adam is an adap-
tive learning rate optimization algorithm well-suited for training deep networks.

• Training Parameters: The model was trained for a maximum of 100 epochs
with a batch size of 1024.

• Callbacks: Several Keras callbacks were used during training to manage the pro-
cess:

– EarlyStopping: Monitored the validation AUC (val auc) and stopped train-
ing if it did not improve for 15 consecutive epochs (patience=15), restoring the
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weights from the epoch with the best val auc (restore best weights=True).

– ReduceLROnPlateau: Monitored val auc and reduced the learning rate by a
factor of 0.5 if no improvement was seen for 5 epochs (patience=5), down to
a minimum learning rate of 10−6.

– ModelCheckpoint: Saved the model weights corresponding to the best val auc
observed during training to a file (hbb tagger.keras). This ensures the best
performing model state is preserved independently of early stopping.

4.7 Evaluation Metrics

To assess the performance of the trained DNN double b-tagger on the independent test
set, several standard metrics for binary classification are used:

• Confusion Matrix: A table summarizing the counts of True Positives (TP, cor-
rectly identified signal), True Negatives (TN, correctly identified background), False
Positives (FP, background misidentified as signal, Type I error), and False Nega-
tives (FN, signal misidentified as background, Type II error). Calculated at specific
operating points (thresholds).

• Accuracy: The overall fraction of correct predictions: Acc = (TP + TN)/(TP +
TN + FP + FN). Can be misleading for imbalanced datasets.

• Precision (Purity): The fraction of positive predictions that are actually correct:
P = TP/(TP + FP ).

• Recall (Sensitivity, True Positive Rate, TPR, Signal Efficiency ϵS): The
fraction of actual positive instances that are correctly identified: R = TPR = ϵS =
TP/(TP + FN).

• F1 Score: The harmonic mean of Precision and Recall, providing a single metric
that balances both: F1 = 2×(P ×R)/(P +R). The optimal classification threshold
is determined by maximizing this metric on the validation set.

• False Positive Rate (FPR, Mistag Rate ϵB): The fraction of actual negative
instances that are incorrectly identified as positive: FPR = ϵB = FP/(FP + TN).
Note: Sometimes referred to as background efficiency.

• Receiver Operating Characteristic (ROC) Curve: A plot of TPR (Recall,
ϵS) versus FPR (ϵB) at various classification thresholds.
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• Area Under the ROC Curve (AUC or ROC AUC): A scalar value repre-
senting the overall discrimination ability of the model across all thresholds. AUC
= 1 indicates a perfect classifier, while AUC = 0.5 indicates performance no better
than random guessing.

• Precision-Recall (PR) Curve: A plot of Precision versus Recall (TPR) at vari-
ous thresholds. Particularly informative for imbalanced datasets where the baseline
(random guessing) is not 0.5.

• Average Precision (AP or PR AUC): The area under the PR curve, com-
puted as a weighted mean of precisions achieved at each threshold, summarizing
performance with a focus on positive class identification.

• Background Rejection: Defined as 1/ϵB (or 1/FPR), representing how effec-
tively the background is suppressed. It is often evaluated at specific fixed values of
signal efficiency (ϵS).

These metrics provide a comprehensive evaluation of the tagger’s performance, presented
in Sec. 5.



Chapter 5

Results

This chapter presents the results obtained from training and evaluating the Deep Neural
Network (DNN) double b-tagger developed in this thesis. The primary goal was to
discriminate boosted Higgs boson decays to bottom quark pairs (H → bb̄) from QCD
multijet backgrounds using a set of 28 engineered features derived from CMS Open Data
simulations. We will analyse the input features, detail the model’s training process and
convergence, evaluate its performance on an independent test set using various metrics,
investigate the importance of individual input features, and discuss the characteristics of
the most and least discriminating variables.

5.1 Dataset Overview

As described in Sec. 3, the dataset was derived from CMS Run 2 Open Data simulation
samples (Record 12102) processed to select AK8 jets satisfying kinematic requirements
relevant for boosted H → bb̄ searches (40 < mSD < 200 GeV, 300 < pT < 2000 GeV).

The final dataset used for this study consists of 629,619 jets, with the following class
distribution:

• Signal (H → bb̄, label=1): 209,305 jets (33.2%).

• Background (Filtered QCD, label=0): 420,314 jets (66.8%).

This dataset was split using stratified sampling into:

• Training set: 402,956 jets (64%)

• Validation set: 100,739 jets (16%)

• Test set: 125,924 jets (20%)

24
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The validation set was used for hyperparameter optimization (Sec. 4) and determining
the optimal classification threshold, while the test set was held out for the final unbiased
performance evaluation presented in this chapter.

5.2 Input Feature Analysis

Before training the model, the correlations between the 28 input features listed in Sec. 3.4
were examined. The correlation matrix, calculated on the full dataset before splitting,
is shown in Fig. 5.1. The matrix reveals varying degrees of correlation between features.

Figure 5.1: Correlation matrix for the 28 input features used in the DNN tagger. The colour
scale indicates the Pearson correlation coefficient.

Some groups of features, such as those related to the properties of the same secondary ver-
tex (e.g., fj tau vertexMass 0, fj tau vertexEnergyRatio 0) or impact parameters of
the same track (e.g., fj trackSipdSig 0, fj trackSipdSig 0 0, fj trackSipdSig 0 1),
exhibit expected moderate to high correlations. However, many features show low corre-
lation with each other, suggesting they provide complementary information. The DNN
architecture is well-suited to handle such correlated inputs and learn the optimal way
to combine them. Features with very high correlation (close to ±1) might indicate re-
dundancy, but no strong redundancies demanding feature removal were observed at this
stage.
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5.3 Model Training and Convergence

The DNN model, with the architecture specified in Sec. 4.5, was trained using the proce-
dure detailed in Sec. 4.6 for a total of 100 epochs. The training process was monitored us-
ing the validation set, employing callbacks for learning rate reduction and saving the best
model based on validation AUC. Early stopping based on validation AUC (patience=15)
was configured but did not trigger before the completion of 100 epochs, indicating con-
tinuous (though potentially small) improvements or stability in validation performance
towards the end of training. The model weights corresponding to the epoch with the
highest validation AUC were saved and used for the final evaluation.

The training history, showing the evolution of the loss function (Focal Loss), Area
Under the ROC Curve (AUC), and F1 score over the training epochs for both the train-
ing and validation sets, is presented in Fig. 5.2. The plots demonstrate stable training

Figure 5.2: Training history of the DNN model over 100 epochs: Loss (left), AUC (center), and
F1 Score (right) as a function of training epochs for the training set (blue) and validation set
(orange).

convergence over the 100 epochs. The loss decreases steadily for both training and val-
idation sets, while the AUC and F1 score increase, indicating successful learning. The
validation curves track the training curves closely throughout the training process, sug-
gesting that the regularization techniques employed (Dropout, L2 regularization, Batch
Normalization) were effective in preventing significant overfitting even during extended
training.

5.4 Threshold Optimization

The output of the DNN is a continuous score between 0 and 1, representing the pre-
dicted probability of the jet being signal (H → bb̄). To make a binary classification
decision, a threshold must be applied to this score. The optimal threshold was deter-
mined by maximizing the F1 score on the validation set predictions, balancing preci-
sion and recall. Fig. 5.3 illustrates how various metrics (Accuracy, Precision, Recall, F1
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Score) vary with the chosen threshold on the validation set. The maximum F1 score on

Figure 5.3: Performance metrics (Accuracy, Precision, Recall, F1 Score) on the validation set as
a function of the classification threshold applied to the DNN output score. The vertical dashed
line indicates the optimal threshold chosen to maximize the F1 score.

the validation set (0.8279) was achieved at a threshold of 0.4800. This value, saved to
hbb tagger optimal threshold.txt, is used as the primary operating point for evalu-
ating the tagger’s performance on the test set in subsequent sections.

5.5 Overall Performance Evaluation on Test Set

The final performance of the trained DNN tagger was evaluated on the independent test
set (125,924 jets), which was not used during training or threshold optimization.

5.5.1 ROC and Precision-Recall Curves

The Receiver Operating Characteristic (ROC) curve and the Precision-Recall (PR) curve
provide comprehensive views of the tagger’s discrimination performance across all possible
operating points. These curves for the test set are shown in Fig. 5.4. The Area Under
the ROC Curve (AUC) quantifies the overall ability of the model to distinguish between
signal and background jets. The calculated AUC on the test set using all 28 features is
0.9441. This high value, close to 1, confirms the excellent discrimination power of the
DNN tagger.

The Area Under the PR Curve, also known as Average Precision (AP), summarizes the
trade-off between precision and recall. The calculated AP on the test set is 0.9004. This
strong AP score indicates high performance, especially relevant given the class imbalance
(approx. 1:2 signal:background) in the dataset.
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Figure 5.4: Performance curves on the test set. Left: Receiver Operating Characteristic (ROC)
curve plotting True Positive Rate (Signal Efficiency) vs. False Positive Rate (Background Mistag
Rate). Right: Precision-Recall (PR) curve.

5.5.2 Discriminator Output Distribution

Fig. 5.5 presents the distribution of the final DNN output score for signal and background
jets in the independent test set, providing a visual representation of the tagger’s separa-
tion power. The figure displays the distributions side-by-side using both a linear y-axis
scale (left panel) and a logarithmic y-axis scale (right panel), with all distributions nor-
malized to unit area. The linear scale view highlights the shape and peak locations of the
signal (H → bb̄, orange) and background (QCD, blue) components, while the logarithmic
scale enhances the visibility of the separation in the low-statistics tails, which is crucial
for evaluating performance in high-purity or high-rejection regions.

A clear separation between the classes is evident, with signal jets predominantly re-
ceiving scores close to 1 and background jets concentrated near 0. The vertical dashed
line indicates the optimal classification threshold (0.4800), selected to maximize the F1
score on the validation set. The text box overlaid on the linear plot quantifies the per-
formance at this specific operating point on the test set, showing high Signal Efficiency
(Recall: 83.30%), Precision (81.85%), F1 Score (0.8257), and Background Rejection (True
Negative Rate: 90.80%). This visualization confirms the strong discriminating capability
of the developed DNN tagger, complementing the integrated performance metrics like
AUC and Average Precision discussed previously.

5.5.3 Performance Metrics at Specific Thresholds

To understand the tagger’s performance at specific operating points, we evaluate standard
classification metrics on the test set using both the optimal threshold determined from
the validation set (0.4800) and the default threshold of 0.5.
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Figure 5.5: Distribution of the DNN output score for signal (H → bb̄, orange) and background
(QCD, blue) jets in the test set, normalized to unit area. The left panel displays the distribution
with a linear y-axis scale, while the right panel uses a logarithmic scale. The vertical dashed line
indicates the optimal classification threshold (0.4800). The info box on the linear plot shows
performance metrics at this threshold.

The confusion matrices for these two thresholds are shown in Fig. 5.6. Table 5.1

Figure 5.6: Confusion matrices on the test set using the optimal threshold (0.4800, left) and
the default threshold (0.5, right).

summarizes the key performance metrics calculated on the test set for both the optimal
and default thresholds.

At the optimal threshold of 0.4800, the tagger achieves a signal efficiency (Recall) of
83.3% and a background rejection factor of 11.1, corresponding to a background mistag
rate (ϵB) of 9.0%. The F1 score at this point is 0.8257. Using the default threshold of 0.5
results in slightly different trade-offs, notably slightly higher precision and background
rejection, but at the cost of lower signal efficiency. This comparison underscores the
benefit of tuning the classification threshold based on the specific analysis goal.
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Table 5.1: Performance metrics on the test set at the optimal threshold (max F1 on validation)
and the default 0.5 threshold.

Metric Optimal Threshold (0.4800) Default Threshold (0.5000)
Accuracy 0.8831 0.8844
Precision 0.8185 0.8346
Recall (ϵS) 0.8330 0.8135
F1 Score 0.8257 0.8239
True Positives (TP) 34,867 34,051
False Positives (FP) 7,563 6,725
True Negatives (TN) 76,500 77,338
False Negatives (FN) 6,994 7,810
False Positive Rate (ϵB) 0.090 0.080
Background Rejection (1/ϵB) 11.1 12.5

5.5.4 Background Rejection vs. Signal Efficiency

A common way to characterize tagger performance in particle physics is to evaluate the
background rejection (1/ϵB) achieved at specific target signal efficiencies (ϵS). Table 5.2
presents these values, calculated on the test set.

Table 5.2: Background rejection and mistag rate (ϵB) achieved on the test set for various target
signal efficiencies (ϵS).

Signal Efficiency (ϵS) Threshold Mistag Rate (ϵB) Background Rejection (1/ϵB)
0.30 0.7871 0.0046 217.8
0.50 0.7110 0.0136 73.7
0.70 0.5965 0.0388 25.8
0.90 0.4015 0.1559 6.4

The results show that the DNN tagger achieves significant background rejection across
a range of signal efficiencies. For instance, at ϵS=50%, the background mistag rate is
only 1.36% (rejection 74), while at ϵS=70%, the rejection is 26. This demonstrates the
tagger’s effectiveness for physics analyses operating at different working points.

5.6 Feature Importance Analysis

To understand which input features contribute most to the DNN’s discrimination power,
permutation feature importance was calculated on the validation set. This method mea-
sures the decrease in AUC when a single feature’s values are randomly shuffled. The
results are shown in Fig. 5.7.

The plot reveals a clear hierarchy. Variables related to jet substructure (fj tau21),
secondary vertex properties (fj tau vertexEnergyRatio 0), and displaced track impact
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parameters (fj trackSip2dSigAboveBottom 0) dominate the ranking. This aligns well
with the expected physics signatures of boosted H → bb̄ decays discussed in Sec. 2.

Figure 5.7: Permutation feature importance calculated on the validation set. Features are
ranked by the mean decrease in AUC when the feature is shuffled. Error bars represent the
standard deviation over 10 repeats.

5.6.1 Most Important Features

Based on Fig. 5.7, the three most important features are:

1. fj tau21

2. fj tau vertexEnergyRatio 0

3. fj trackSip2dSigAboveBottom 0

Fig. 5.8, Fig. 5.9, and Fig. 5.10 show the distributions of these features for signal and
background jets, comparing true labels and predicted labels at the optimal threshold
(0.4800).

fj tau21 (N-subjettiness Ratio τ2/τ1): As discussed in Sec. 2.6, τ21 measures the com-
patibility of the jet’s energy distribution with a two-prong versus a one-prong structure.
Fig. 5.8 (left) shows that true signal jets (H → bb̄, inherently two-prong) exhibit signif-
icantly lower τ21 values compared to background QCD jets, which are often initiated by
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single quarks or gluons (one-prong). The DNN effectively learns this, as the predicted sig-
nal jets (Fig. 5.8 (right)) are predominantly those with low τ21. This confirms the crucial
role of jet substructure in identifying boosted, hadronically decaying heavy particles.

Figure 5.8: Distribution of the feature fj tau21. Left: Separated by true labels. Right:
Separated by predicted labels using the optimal threshold (0.4800).

fj tau vertexEnergyRatio 0 (Energy Ratio of Leading SV): This variable represents
the energy fraction carried by tracks associated with the leading (highest flight distance
significance) secondary vertex (SV) within the jet. Fig. 5.9 (left) shows that true signal
jets tend to have higher values for this ratio compared to background jets. This likely
reflects that in H → bb̄ decays, a significant portion of the jet energy originates from
the B-hadron decays captured by the leading SV. Background jets may have SVs from
gluon splitting or light hadron decays carrying a smaller fraction of the total jet energy.
The prediction plot (Fig. 5.9 (right)) indicates the DNN uses this feature effectively to
identify signal events.

Figure 5.9: Distribution of the feature fj tau vertexEnergyRatio 0. Left: Separated by true
labels. Right: Separated by predicted labels using the optimal threshold (0.4800).

fj trackSip2dSigAboveBottom 0 (Track 2D IP Significance relative to B hypothe-
sis): This feature measures the 2D impact parameter significance of the leading track
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associated with the leading secondary vertex candidate, calculated relative to a B-hadron
lifetime hypothesis. As expected from Sec. 2, B-hadron decays produce tracks with large
impact parameters. Fig. 5.10 (left) demonstrates that true signal jets have a distribution
skewed towards larger positive values for this significance variable compared to back-
ground jets. This provides strong evidence for the presence of a B-hadron. The DNN
leverages this key lifetime information, as shown by the separation in the predicted label
plot (Fig. 5.10 (right)).

Figure 5.10: Distribution of the feature fj trackSip2dSigAboveBottom 0. Left: Separated by
true labels. Right: Separated by predicted labels using the optimal threshold (0.4800).

The high importance of these top three features highlights the synergy of substructure,
vertexing, and tracking information for this task.

5.6.2 Least Important Features

Conversely, the three features found to have the lowest permutation importance are:

1. fj tau1 trackEtaRel 2 (Relative η of 3rd track w.r.t. subleading SV axis)

2. fj tau vertexMass 1 (Mass of subleading SV)

3. fj tau1 trackEtaRel 1 (Relative η of 2nd track w.r.t. subleading SV axis)

These features, while included in the model, contribute minimally to the final discrim-
ination performance in the context of the other 25 features. Potential reasons include
focus on subleading/lower-rank objects, less discriminating power of the subleading ver-
tex mass, or redundancy with more highly ranked features. Their inclusion does not
significantly harm performance.
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5.7 Quantifying the Impact of N-subjettiness

To further understand the relative contributions of different types of information to the
tagger’s performance, and to provide context for benchmark comparisons (discussed in
Sec. 6), the impact of the single most important feature identified in Fig. 5.7—the N-
subjettiness ratio fj tau21—was explicitly evaluated. As discussed in Sec. 2.6, τ21 is
designed to capture the two-prong substructure characteristic of boosted heavy particle
decays like H → bb̄, distinguishing them from typically single-prong QCD jets.

An ablation study was performed by training and evaluating the identical optimized
DNN architecture and procedure described in Sec. 4, but using only the other 27 input
features (i.e., excluding fj tau21). This assessment isolates the contribution of this key
substructure variable.

The resulting performance on the independent test set yielded a ROC AUC of ap-
proximately 0.92. Comparing this to the final AUC of 0.9441 achieved with the full
set of 28 features reveals a significant performance gain (∆AUC ≈ 0.024) attributable
specifically to the inclusion of fj tau21.

The substantial importance of τ21 stems directly from the distinct radiation patterns
within the signal and background jets. Boosted H → bb̄ decays inherently produce two
energetic partons (the b and b̄ quarks), leading to a fat jet whose energy distribution
is concentrated around two distinct axes or ’prongs’. In contrast, the dominant QCD
background jets are typically initiated by a single quark or gluon, resulting in a more
centrally concentrated, single-prong energy distribution within the fat jet. Mathemati-
cally, N-subjettiness (τN) quantifies how well the jet’s constituents align with N candidate
subjet axes [14]:

τN = 1
d0

∑
k

pT,k min{(∆R1,k)β, (∆R2,k)β, ..., (∆RN,k)β}

where the sum is over constituents k with transverse momentum pT,k, ∆RJ,k is the an-
gular distance to subjet axis J , d0 = ∑

k pT,kRβ is a normalization factor with jet ra-
dius R, and β is an angular exponent (typically 1). The ratio used in this analysis,
τ21 = τ2/τ1, effectively quantifies the compatibility with a two-prong structure (low τ21)
versus a single-prong structure (high τ21). While vertexing and impact parameter features
(like fj tau vertexEnergyRatio 0 and fj trackSip2dSigAboveBottom 0) are crucial
for identifying the heavy − flavor nature of the jet constituents through their long life-
times, τ21 provides complementary information about the underlying hard decay topology
(two-body vs. one-body origin) based on the jet’s energy flow. This synergy between
substructure and lifetime information allows the DNN to achieve optimal discrimination.
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5.8 Summary of Results

The DNN double b-tagger developed using 28 engineered features from CMS Open Data
simulation achieved excellent performance in identifying boosted H → bb̄ signal jets
against QCD multijet backgrounds. The model training converged successfully, and eval-
uation on the independent test set yielded an AUC of 0.9441 and an Average Pre-
cision of 0.9004. A study excluding the top feature (fj tau21) yielded an AUC of
approx. 0.92, highlighting the significant contribution of substructure information. At
an operating point optimized for the F1 score (threshold = 0.4800), the final 28-feature
tagger achieves a signal efficiency of 83.3% with a background rejection factor of 11.1
(9.0% mistag rate) on the test set. Feature importance analysis confirmed that jet sub-
structure (fj tau21), vertex properties (fj tau vertexEnergyRatio 0), and track im-
pact parameters (fj trackSip2dSigAboveBottom 0) are critical for discrimination. The
results demonstrate the effectiveness of applying optimized DNNs to high-level features
for this challenging particle physics classification task using publicly available data.
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Discussion

6.1 Interpretation of Key Results

The tagger developed in this work achieved excellent performance on the independent
test set, yielding an Area Under the ROC Curve (AUC) of 0.9441 and an Average
Precision (AP) of 0.9004 using the full set of 28 input features. These headline metrics
confirm that the DNN architecture effectively learned to distinguish the signal signature
from background using the provided high-level features, demonstrating a strong capability
for this challenging classification task.

Beyond these overall measures, the tagger demonstrates potent background rejection
capabilities crucial for LHC analyses. For instance, at a 50% signal efficiency (ϵS), it
achieves a QCD rejection factor (1/ϵB) of approximately 74, while at 70% signal efficiency,
the rejection remains strong at roughly 26 (Table 5.2). This highlights its potential
utility in suppressing backgrounds. Furthermore, at the specific operating point chosen
by maximizing the F1-score on the validation set (threshold=0.4800), the tagger achieves
a signal efficiency (Recall) of 83.3% with a corresponding precision of 81.9% on the test
set (details in Table 5.1). This demonstrates a practical balance between identifying
signal events and controlling false positives for this chosen working point. The stable
training convergence observed (Fig. 5.2) further validates the chosen network design and
training methodology.

6.2 Analysis of Performance Drivers, Feature Roles,
Correlations, and Model Complexity

The DNN’s strong performance stems from its ability to synthesize information from
physically motivated features. As indicated by the feature importance (Fig. 5.7), a syn-

36
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ergistic combination is vital. Key substructure information, like that from fj tau21,
acts as an initial filter for two-prong topologies. This is critically supported by
vertexing features (e.g., fj tau vertexEnergyRatio 0) and lifetime information (e.g.,
fj trackSip2dSigAboveBottom 0), which confirm the heavy-flavor origin of these prongs
and reduce misidentification from lighter quark/gluon jets that might mimic a two-prong
structure.

Beyond these top discriminants, other variables offer necessary detail for ro-
bust classification. For instance, secondary vertex data (like fj nSV and
fj tau flightDistance2dSig 1) aid in distinguishing genuine double b-decays from sin-
gle b-jets that have additional vertices due to processes like gluon splitting (g → qq̄). Sim-
ilarly, impact parameter measurements from multiple tracks (such as fj trackSipdSig 1,
fj trackSipdSig 2, and fj trackSipdSig 3) improve resilience against tracking vari-
ations or occasional high-IP tracks in background jets from other sources like strange
hadron decays or material interactions. The DNN effectively learns to use this broader
set of inputs to refine its classifications.

Feature correlations, as shown in Fig. 5.1, are anticipated, especially for variables
describing the same physical object (like an SV). Unlike simpler models that might need
feature pruning, DNNs can often leverage these correlations. The network probably learns
complex, non-linear patterns; for example, unexpected relationships between SV energy
and mass could offer discriminating power not available to linear models or simple cuts.
Therefore, using the complete, correlated feature set was a strategic decision to maximize
the information for the DNN, enable comprehensive benchmarking, and clearly evaluate
the contribution of key features such as fj tau21 in a detailed context.

Consequently, the DNN’s complexity appears well-justified and necessary. The task
of identifying two simultaneous B-hadron decays within a dense, high-pT fat jet—amidst
substantial QCD background and detector resolution limitations—requires sensitivity to
subtle, high-dimensional patterns. The achieved performance strongly indicates that
simpler models would not be capable of capturing these nuances effectively using the 28
available features.

6.3 Significance and Context of Boosted H → bb̄ Tag-
ging

The theoretical prediction of the Brout-Englert-Higgs mechanism earned Englert and
Higgs the 2013 Nobel Prize in Physics. Following the experimental discovery in 2012, the
focus shifted to precisely measuring the Higgs boson’s properties to test the Standard
Model (SM) and search for deviations indicating new physics. The fundamental impor-
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tance and success of this ongoing experimental program were recently highlighted by the
2025 Breakthrough Prize in Fundamental Physics, awarded collectively to the ATLAS,
CMS, ALICE, and LHCb collaborations. The citation explicitly recognized their ”detailed
measurements of Higgs boson properties confirming the symmetry-breaking mechanism
of mass generation” during LHC Run 2 [30].

The H → bb̄ decay channel, addressed in this thesis, is indispensable for this program
because it:

• Is the dominant decay (∼58% BR), offering high statistics.

• Directly probes the Higgs coupling to the bottom quark (yb), testing the SM mass
mechanism.

• In the boosted regime, accesses key production modes (VH, ttH) and BSM searches,
requiring advanced techniques like those used here (fat jets, substructure, double
b-tagging).

Developing high-performance taggers for this channel directly aids these fundamental
physics goals recognized by major scientific awards.

6.3.1 Benchmarking Performance

The cernopendata/datascience/HiggsToBBMachineLearning repository [31] provides
a relevant public benchmark using the same Open Data record, reporting baseline per-
formance around AUC ≈ 0.90 with ∼27 features [32]. The final result here (AUC =
0.9441 with 28 features) is significantly better. Notably, the optimized architecture and
training developed here already achieved AUC ≈ 0.92 on the same 27 features, outper-
forming the baseline even before adding fj tau21. The final performance thus reflects
benefits from both the effective network design and the inclusion of crucial substructure
information.

This comparison shows competitive results are achievable with public data and opti-
mized models on engineered features, relevant to the state-of-the-art efforts recognized
by the recent Breakthrough Prize.

6.4 Critical Discussion of Limitations and Their Im-
pact

A realistic assessment requires acknowledging study limitations and their potential im-
pact:
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• Simulation Reliance: The exclusive use of simulation means reported efficiencies
and mistag rates likely differ from reality due to imperfect modeling of detector
response, pileup, and hadronization. Impact: Without data calibration (deriving
scale factors), the tagger cannot be reliably used for quantitative physics measure-
ments, as biases would be uncontrolled.

• Open Data Constraints: Using a specific Open Data snapshot restricts the analy-
sis to available variables and reconstruction versions, potentially limiting achievable
performance compared to internal analyses with more data or features. Impact: The
results demonstrate potential on public data but might not represent the absolute
state-of-the-art achievable within the collaboration.

• Engineered Feature Ceiling: The tagger’s knowledge is confined to the infor-
mation captured by the 28 pre-processed features. Subtle correlations or patterns
in raw constituent data are inaccessible. Impact: Performance might be inherently
limited compared to end-to-end deep learning models (e.g., GNNs, PFNs) that
learn representations directly from constituents, although these come with higher
complexity.

• Simplified Background Model: Training primarily against QCD neglects other
potential backgrounds (W/Z+jets, tt̄) that could pass selections in a real analy-
sis. Impact: The tagger’s discrimination against these non-QCD backgrounds is
unknown and could be significantly worse, potentially leading to underestimation
of total background or requiring dedicated vetoes.

• Absence of Systematics: Lacking systematic uncertainty evaluation prevents a
complete assessment. Impact: Uncertainties arising from sources like Jet Energy
Scale/Resolution (JES/JER), flavor tagging efficiencies, pileup modeling, and the-
oretical cross-sections would add significant error bars to any physics result derived
using this tagger, potentially dominating the statistical uncertainty.

6.5 Concrete Proposals for Future Work with Ratio-
nale

Building on this work requires addressing its limitations and exploring extensions:

• Collision Data Validation: This is paramount for usability. We can define signal-
depleted control regions (e.g., mass sidebands, anti-tagged regions) in Open Data
collision samples to measure mistag rates. Use tt̄ samples, if feasible, via tag-and-
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probe to estimate b-tagging efficiency, ultimately deriving simulation-to-data scale
factors.

• Systematic Uncertainty Assessment: Initially,we can focus on dominant exper-
imental uncertainties by propagating variations in JES/JER (if possible with Open
Data tools) and incorporating data-derived scale factor uncertainties for b/c/light-
jet tagging including theoretical uncertainties on signal/background cross-sections.

• Further Training Optimization: Potentially marginal gains are possible.Since
early stopping wasn’t triggered at 100 epochs, we can conduct longer runs (e.g., 200
epochs) or employ more sophisticated hyperparameter optimization (e.g., Bayesian
optimization extending the initial Keras Tuner search) to probe for further improve-
ments.

• Lower-Level Feature Exploration: We can identify Open Data formats with
particle-flow constituents, implement suitable architectures (e.g., ParticleNet, PFN),
manage the increased computational load, and directly compare performance to
quantify the gains from constituent-level learning vs. high-level features.

• Multi-Class Extension: We can identify and process relevant Open Data MC
samples (e.g., Z → bb̄, tt̄) and train a multi-class network to specifically distinguish
H → bb̄ from individual background categories, potentially improving overall purity.

In conclusion, this thesis presented a high-performance DNN H → bb̄ tagger using
CMS Open Data, achieving competitive results relevant to the ongoing, highly recog-
nized scientific effort to characterize the Higgs boson. While acknowledging limitations
requiring further work (especially data validation and systematics), this study provides
a strong foundation and highlights the potential of applying optimized deep learning
techniques to public LHC datasets.
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Conclusion

This thesis presented the development, training, and comprehensive evaluation of a Deep
Neural Network (DNN) aimed at the challenging task of identifying boosted jets originat-
ing from Higgs boson decays to bottom quarks (H → bb̄) and discriminating them from
a large background of Quantum Chromodynamics (QCD) multijet events. The study
utilized publicly available Monte Carlo simulation samples from the CMS experiment
corresponding to Run 2 conditions, accessed via the CERN Open Data Portal (Record
12102), demonstrating the potential of these resources for advanced physics analysis and
machine learning development. The focus was on leveraging a specific set of 28 high-
level, engineered features derived from reconstructed fat jets (AK8) capturing tracking,
vertexing, and jet substructure information.

7.1 Summary of Key Findings

The primary objective—developing and evaluating an effective DNN-based double b-
tagger for boosted H → bb̄ using engineered features on Open Data was successfully
achieved. The key findings derived from the evaluation on an independent test set are:

• High Discrimination Performance: The final tagger, utilizing 28 input features,
demonstrated excellent overall discrimination power, achieving a ROC AUC of
0.9441 and an Average Precision (PR AUC) of 0.9004.

• Effective Working Point: At an operating point optimized to balance precision
and recall (maximizing F1-score on validation), the tagger yields a practical signal
efficiency (Recall) of 83.3% with a corresponding precision of 81.9%. It also
provides strong background rejection across various efficiency targets (e.g., rejection
factor ∼74 at 50% efficiency).

41
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• Superiority over Baseline and Feature Impact: The optimized DNN architec-
ture and training procedure significantly outperformed baseline examples associated
with the dataset. The model achieved an AUC of approximately 0.92 using only
27 features (excluding N-subjettiness), already surpassing the benchmark AUC of
∼0.90. The inclusion of the fj tau21 substructure variable further boosted per-
formance to the final AUC of 0.9441, quantifying the importance of both model
optimization and jet substructure information.

• Identification of Key Discriminants: Feature importance analysis confirmed
that the tagger’s success relies on synergistically combining information from jet
substructure (fj tau21), vertexing (e.g., fj tau vertexEnergyRatio 0), and
B-hadron lifetime (e.g., fj trackSip2dSigAboveBottom 0), aligning well with
the underlying physics principles.

These results collectively demonstrate the efficacy of the developed approach for this
specific, challenging tagging task within the constraints of using high-level features and
public data.

7.2 Concluding Remarks and Outlook

This thesis successfully developed and validated a high-performance DNN tagger for
boosted H → bb̄ identification, contributing to the ongoing efforts in Higgs boson char-
acterization—a field recognized by the highest scientific honors like the 2013 Nobel Prize
and the 2025 Breakthrough Prize. The Python code developed for the data
processing, model implementation, training, evaluation, and figure genera-
tion presented in this work is publicly available on GitHub [33] at: https:
//github.com/TheDevNair/Thesis_project. The work underscores the value of CMS
Open Data for enabling meaningful research and demonstrates that optimized deep learn-
ing models applied to well-engineered features can achieve highly competitive performance
relevant to LHC Run 2 standards.

While the tagger shows excellent potential on simulation, its practical application
requires addressing the inherent limitations, most critically the need for validation
on collision data and a thorough assessment of systematic uncertainties. These
steps, outlined in the future work proposals (Sec. 6.5), are essential to calibrate the tagger
and understand the full uncertainty on its performance before it can be reliably used in
a physics analysis aiming to measure SM properties or search for new phenomena.

In conclusion, this work provides a robust implementation and a strong performance
benchmark for boosted H → bb̄ tagging using deep learning on high-level features within

https://github.com/TheDevNair/Thesis_project
https://github.com/TheDevNair/Thesis_project
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the accessible framework of CMS Open Data, laying a solid foundation for subsequent
studies involving real data and physics analysis integration.
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